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1. Introduction

Let Q be a bounded domain in RN, N > 2. For T > 0, let us denote by @ the cylinder
2 x (0,7), and by I' the lateral surface 02 x (0,7"). Let p be a real number such that
p>2—1/(N+1).

We consider the following nonlinear parabolic Cauchy-Dirichlet problem:

—div(a(z,t,u, Du)) = f in Q,
u(z,t) =0 on I, (P)
u(z,0) = up in Q.

Here f and ug belong to M(Q) and M(S2), the space of bounded Radon measures on
Q and Q respectively. The function a(z,t,s,€) : @ x R x RY — RY is a Carathéodory
function (i.e., it is continuous with respect to s and & for almost every (z,t) € @, and
measurable with respect to (z,t) for every s € R and £ € RY). We assume that there
exist two real positive constants \g, @ and a positive function h € L¥' (Q), such that for
any s € R, £ € RN ne RN, £ # n and for almost every (z,t) € Q,

a(x,t, S,f)g > )‘0‘6|p (
la(@,t,5,€)] < a(h(z,t) + [P~ + €77 (1.
[a(x,t,s,&) —a(%tasa??)][f—ﬂ] > 0. (

We look for weak solutions, i.e., for function w such that w € L'(0,T; W, (Q)),
a(z,t,u, Du) € L'(Q) and

e
W N
SN N’ N

/ u—dwdt + / a(x,t,u, Du)Dodxdt = / odf + / &(x,0)dug(x), (1.4)
Q Q Q
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for every ¢ € C*°(Q) which is zero in a neighborhood of T'U (2 x {T'}).
We recall the following results(see [1], [2] or [3]).

Theorem 1.1. Assume (1.1)—(1.3) hold, p > 2 —1/(N+ 1), f € M(Q),up € M(Q).
Then there ezists a solution u of problem (P) such that

N
u € Lq(O,T, Wol’q(Q)); vq < pP— Ni—kl = {qo-

Remark 1.2. We observe that go > 1 if and only if p > 2 — 5.

In order to obtain u € L% (0, T; W, ®(f2)), a sufficient condition is given by the following
theorem.

Theorem 1.3. Assume (1.1)~(1.3) hold, p > 2 — ., f € L'(0,T; L*log L' (), uo €
Ltlog LY (), where L' log L(Q) is the Orlicz space generated by the function slog(1+s).
Then there exists a solution u of problem (P) such that

u e LC(0,T; Wy™(Q)).

Remark 1.4. The results given in Theorem 1.1 and Theorem 1.3 are only proved in the

case p > 2 — 5. However, in general, if 1 < p < 2 — 5, f and g are only bounded

measures(or even integrable functions), a weak solution in the sense of (1.4) doesn’t exist.
Recently, existence of so-called renormalized solutions has been proved for problems of
type (P) and of the corresponding elliptic problem for every p > 1 (see [4],[5]).

This paper extends the analogous result of [6] to parabolic equations. Here we give
the improvement of the summability of the solution u to problem (P) only under the
assumptions of Theorem 1.1.

2. Regularity results

In this section, we give an improvement of the summability of the solution u to problem
(P). We begin by recalling the well-known Gagliardo-Nirenberg embedding theorem (see

[8])-
Lemma 2.1. Let v be a function in Wy ?(Q) N LP(Q), with ¢ > 1, p > 1. Then there
exists a positive constant Cy depending on N, q, and p, such that

[vllzo @) < Cill DollZaoy 0]l oty (2.1)

for every 0 and vy satisfying

1 1
0<0<1, 1<y<+00, —=0(-— =)+ —. 2.2
v 5 (q N ; (2.2)

We state the main result of this paper.
Theorem 2.2. The solution u of problem (P) given by Theorem 1.1 is such that for every
B> 1,

E@iﬁJWELW@ﬂﬂﬁmm% (2.3)
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Proof. We follow the method of [1], [2] or [3]. Let {f,} C L>(Q), {uon} C L*®(2), such
that

fo — f weak* in M(Q),
Uon — ug weak® in M(Q). (2.5

Moreover, there exists a positive constant Cy independent of n, such that for every n

[ fallei@) < Co, (2.6)
|wonllzr(0) < Co. (2.7)

We consider the approximate problem:

2 — div(a(w,t, un, Duy)) = fn in Q,

un(z,t) =0 on I, (P,)
un(xa 0) = Uonp in Q

For any given positive integer n, by [9], problem (P,) admits a solution u, € L?(0,T;
Wy () N C([0,T]; L*(Q)) and satisfies

(Unt, ¥) +/ a(2,t, tn, Dug) Dipdzdt = (fn, ), Vi € LP(0,T; Wy (€)). (2.8)
Q

For any given constant & > 0, we define the cut function 7} : R — R as

Ty(s) = S if |s| <k, (2.9)
BT ) ksign(s) if |s| > k. '

and let ©(o) be
Ok(o) = /00 Ti(s)ds. (2.10)
X

For any given 7 € (0,7), we take v = Ti(un)X(0,r) in (2.8), where x(o,) denotes the
characteristic function of set (0,7) in [0, 7], we easily obtain

/ O (un(z, 7)) dz — / 01 (ugn)dz < / Full T () dadt < ([ follor - (2.11)
Q Q Q
Since we have |s| —1/2 < ©4(s) < |s| for every s € R, we obtain for every 7 € (0,7,

/ un(z,7)|dx < || fullLi@) + 1/2meas + [[uon|| L1 () (2.12)
Q

By (2.6), (2.12) yields

|[tn| Loo 0,22 (02)) < Cs, (2.13)
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where Cj3 is a positive constant independent of n.

For any given k£ > 0, let us define the function ¢x(s) = min{(|s| — k)™, 1} sign(s) and the
set By = {(z,t) € Q : k < |up(z,t)| < k+ 1}. We take ¢y, = ¢p(u,) in (2.8), by (1.1), we
obtain

/ (1 (&, T) ) — / Geluon)dz + 2o [ [DunPdedt < ||l i, (2.14)
Q Q By,
where we have defined ¥,(0) = [ ¢x(s)ds. Since 0 < (o) < o], by (2.6),
| Du,|Pdzdt < C,4 (2.15)
By,
From now we denote by Cy4, Cs, - -+ various positive constants which only depend on the
known data of the problem but independent of n, u,, k.
For any given § > —=, let us define a function o(s) as
s
o(8) = ————, Vs € R. 2.16
)= logz+ P (216)

(2.13) and (2.16) imply that
6 (un) || oo 0,521 () < Cs. (2.17)
By (2.15) and 8 > .=, we obtain

/ | Dun|? dzdt
o @+ [un])llog (2 + [u )P 7

o0

/ Do dzdt
[, (2+ [un])[log(2 + [un])]e~-1A (2.18)

> 1
< < .
= ; G+ Blog2 + Ko7 =

Setting g(uyn) = (2 + |u,|)[log(2 + |u,|)]®~1?, Holder’s inequality and (2.18) yield

/ Dé(uy)[Pdzdt < / Dy || ¢ (u,) [Pt
Q

| Duy|® i 0
a /Q g(u )q0/p‘¢( n)| g () /P dzdt

Du, a pag _ap _
<(/ Dunl? ) % [ 16 P gl daay %
Q g(un) Q

< ( / 6 () [2%5 g ) 7% )
Q

(2.19)

< & /Q (1+ 16 () )75 dardt)

a0 a0

S%+%%HWMMV& dt)' v

L7=% (9)
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In fact, since Vs € R, (2+ |s|) log(2 + |s|) > 1+ |s], then |¢/(s)| < (1 + B)[log(2 + |s])] 7.
Thus we have

10 (5)[Pg(s) < (14 B)[log(2 + |s)] 7 (2 + |s]) < 3(1 + B)"[log 2)] (1 + [4(s)]).
The above inequality yields the first of these two last inequalities in (2.19).
Taking v = ¢(u,(t)) for a. e. t € (0,7), ¢ =qo, p=1,7= -2 in Lemma 2.1, we have

16(un®)I o < CLll DP(uun(t)) |y @ (un )71 0y, 2. e € (0,T),  (2:20)

(@)

and
P=®_gl 1y 1 g o<o<t. (2.21)
4o % N
(2.20), (2.17) and (2.19) imply that
T bag_ w©
/ |D¢(uy)|®dzdt < Cg + 010(/ ||D¢(un(t))||£;§?Q)dt)1’F. (2.22)
Q 0
o _ _ N
If we choose =~ =1, by (2.21), we must take § = 575. Thus we have
/ |D(uy,)|®dzdt < Cg + 010(/ |D¢(un)|q°dxdt)1*q?0. (2.23)
Q Q
Since 0 <1 -2 <1, (2.23) yields
/ | Dip ()| dadt < Cys. (2.24)
Q

Poincaré’s inequality and (2.24) imply that
T
2O 1,40,y dt < Cha 2.2
[ 0Oyt < i (2.25)

The method of [2] allow us to pass to the limit in the approximate equations and we can
prove that there exists a solution u to problem (P) such that (2.3) hold. This completes
the proof of Theorem 2.2. O
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