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PIUNIKHIN–SALAMON–SCHWARZ
ISOMORPHISMS AND SPECTRAL INVARIANTS

FOR CONORMAL BUNDLE

Jovana Ðuretić

Abstract. We give a construction of the Piunikhin–Salamon–Schwarz iso-
morphism between the Morse homology and the Floer homology generated by
Hamiltonian orbits starting at the zero section and ending at the conormal
bundle. We also prove that this isomorphism is natural in the sense that it
commutes with the isomorphisms between the Morse homology for different
choices of the Morse function and the Floer homology for different choices of
the Hamiltonian. We define a product on the Floer homology and prove tri-
angle inequality for conormal spectral invariants with respect to this product.

1. Introduction and main results

Let 𝑀 be a compact smooth manifold. The cotangent bundle 𝑇 *𝑀 of 𝑀
carries a natural symplectic structure 𝜔 = 𝑑𝜆, where 𝜆 is the Liouville form. Let

𝜈*𝑁 = {𝛼 ∈ 𝑇 *
𝑝𝑀 | 𝑝 ∈ 𝑁, 𝛼|𝑇𝑝𝑁 = 0} ⊂ 𝑇 *𝑀,

be a conormal bundle of a closed submanifold 𝑁 ⊆ 𝑀 . Let 𝐻 be a time-dependent
smooth compactly supported Hamiltonian on 𝑇 *𝑀 such that the intersection 𝜈*𝑁∩
𝜑1

𝐻(𝑜𝑀 ) is transverse. Here, 𝜑𝑡
𝐻 : 𝑇 *𝑀 → 𝑇 *𝑀 denotes the Hamiltonian flow

of the Hamiltonian vector field 𝑋𝐻 . Floer chain groups CF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻) are
Z2-vector spaces generated by the finite set 𝜈*𝑁 ∩ 𝜑1

𝐻(𝑜𝑀 ) (see [26] for more
details). The Floer homology HF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻) is defined as the homology group
of (CF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻), 𝜕𝐹 ) where 𝜕𝐹 is a boundary operator

𝜕𝐹 (𝑥) =
∑︁

𝑦∈𝜈*𝑁∩𝜑1
𝐻

(𝑜𝑀 )

𝑛(𝑥, 𝑦;𝐻)𝑦,

and 𝑛(𝑥, 𝑦;𝐻) is the (mod 2) number of solutions of the system
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𝜕𝑢

𝜕𝑠
+ 𝐽

(︁𝜕𝑢
𝜕𝑡

−𝑋𝐻(𝑢)
)︁

= 0, 𝑢(−∞, 𝑡) = 𝜑𝑡
𝐻((𝜑1

𝐻)−1)(𝑥),

𝑢(𝑠, 0) ∈ 𝑜𝑀 , 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑢(+∞, 𝑡) = 𝜑𝑡
𝐻((𝜑1

𝐻)−1)(𝑦),(1.1)
𝑥, 𝑦 ∈ 𝜈*𝑁 ∩ 𝜑1

𝐻(𝑜𝑀 ).
This homology was introduced by Floer [7], developed by Oh [23] and Fukaya, Oh,
Ohta and Ono in the most general case [11]. For a convenience, these groups will
be denoted by HF*(𝐻). Although it is well known that these groups do not depend
on 𝐻, we will keep 𝐻 in the notation, since in many practical applications it is
useful to keep track on the Hamiltonian used in their definition. For two regular
pairs of parameters (𝐻𝛼, 𝐽𝛼) and (𝐻𝛽 , 𝐽𝛽) the isomorphism 𝑆𝛼𝛽 : HF*(𝐻𝛼) →
HF*(𝐻𝛽) between corresponding the Floer homology groups is induced by the
chain homomorphism

𝜎𝛼𝛽 : CF*(𝐻𝛼) → CF*(𝐻𝛽), 𝜎𝛼𝛽(𝑥𝛼) =
∑︁
𝑥𝛽

𝑛(𝑥𝛼, 𝑥𝛽 ;𝐻𝛼𝛽)𝑥𝛽 ,

that counts the number 𝑛(𝑥𝛼, 𝑥𝛽 ;𝐻𝛼𝛽) of solutions of the system
𝜕𝑢

𝜕𝑠
+ 𝐽𝛼𝛽

(︁𝜕𝑢
𝜕𝑡

−𝑋𝐻𝛼𝛽 (𝑢)
)︁

= 0, 𝑢(𝑠, 0) ∈ 𝑜𝑀 , 𝑢(𝑠, 1) ∈ 𝜈*𝑁,

𝑢(−∞, 𝑡) = 𝜑𝑡
𝐻𝛼((𝜑1

𝐻𝛼)−1)(𝑥𝛼), 𝑥𝛼 ∈ 𝜈*𝑁 ∩ 𝜑1
𝐻𝛼(𝑜𝑀 ),(1.2)

𝑢(+∞, 𝑡) = 𝜑𝑡
𝐻𝛽 ((𝜑1

𝐻𝛽 )−1)(𝑥𝛽), 𝑥𝛽 ∈ 𝜈*𝑁 ∩ 𝜑1
𝐻𝛽 (𝑜𝑀 ).

Here 𝐻𝛼𝛽
𝑠 and 𝐽𝛼𝛽

𝑠 are 𝑠-dependent families such that for some 𝑅 > 0

𝐻𝛼𝛽
𝑠 =

{︃
𝐻𝛼, 𝑠 6 −𝑅
𝐻𝛽 , 𝑠 > 𝑅,

𝐽𝛼𝛽
𝑠 =

{︃
𝐽𝛼, 𝑠 6 −𝑅
𝐽𝛽 , 𝑠 > 𝑅.

We define the action functional A𝐻 on the space of paths
Ω(𝑜𝑀 , 𝜈*𝑁) = {𝛾 : [0, 1] → 𝑇 *𝑀 | 𝛾(0) ∈ 𝑜𝑀 , 𝛾(1) ∈ 𝜈*𝑁}

by A𝐻(𝛾) = −
∫︀
𝛾*𝜆+

∫︀ 1
0 𝐻(𝛾(𝑡), 𝑡) 𝑑𝑡. Critical points of A𝐻 are Hamiltonian paths

with ends on the zero section and the conormal bundle, i.e., CF*(𝐻). Now we can
define filtered Floer homology. Denote CF𝜆

*(𝐻) = Z2⟨𝑥 ∈ CF*(𝐻) |A𝐻(𝑥) <
𝜆⟩. Since the action functional decreases along holomorphic strip (see [23] for
details) the differential 𝜕𝐹 preserves the filtration given by A𝐻 . Its restriction
𝜕𝜆

𝐹 = 𝜕𝐹 |CF𝜆
* (𝐻) defines a boundary operator on the filtered complex CF𝜆

*(𝐻). The
filtered Floer homology is now defined as the homology of the filtered complex

HF𝜆
*(𝐻) = 𝐻*(CF𝜆

*(𝐻), 𝜕𝜆
𝐹 ).

Note that the filtered Floer homology depends on the Hamiltonian 𝐻.
Let us recall the definition of the Morse homology. For a Morse function 𝑓 :

𝑁 → R the Morse chain complex, CM*(𝑁 : 𝑓), is a Z2–vector space generated
by the set of critical points of 𝑓 . Morse homology groups HM*(𝑁 : 𝑓) are the
homology groups of CM*(𝑁 : 𝑓) with respect to the boundary operator

𝜕𝑀 : CM*(𝑁 : 𝑓) → CM*(𝑁 : 𝑓), 𝜕𝑀 (𝑝) =
∑︁

𝑞∈Crit(𝑓)

𝑛(𝑝, 𝑞; 𝑓)𝑞,
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where 𝑛(𝑝, 𝑞; 𝑓) is the number of gradient trajectories that satisfy

(1.3) 𝑑𝛾

𝑑𝑠
= −∇𝑓(𝛾), 𝛾(−∞) = 𝑝, 𝛾(+∞) = 𝑞.

Here, 𝛾 is a negative 𝑔-gradient trajectory of 𝑓 and 𝑔 is a Riemannian metric on
𝑁 such that (𝑓, 𝑔) is the Morse–Smale pair. In a way analogous to 𝑆𝛼𝛽 , we can
define an isomorphism 𝑇𝛼𝛽 : HM*(𝑓𝛼) → HM*(𝑓𝛽) between Morse homologies of
two different Morse functions 𝑓𝛼 and 𝑓𝛽 . For given Morse–Smale pairs (𝑓𝛼, 𝑔𝛼)
and (𝑓𝛽 , 𝑔𝛽), we choose a homotopy of the Riemannian metrics 𝑔𝛼𝛽

𝑠 such that

𝑔𝛼𝛽
𝑠 =

{︃
𝑔𝛼, 𝑠 6 −𝑅
𝑔𝛽 , 𝑠 > 𝑅.

The isomorphism 𝑇𝛼𝛽 is generated by the chain homomorphism

𝜏𝛼𝛽 : CM*(𝑓𝛼) → CM*(𝑓𝛽) where 𝜏𝛼𝛽(𝑝𝛼) =
∑︁
𝑝𝛽

𝑛(𝑝𝛼, 𝑝𝛽 ; 𝑓𝛼𝛽)𝑝𝛽 ,

that counts the number 𝑛(𝑝𝛼, 𝑝𝛽 ; 𝑓𝛼𝛽) of solutions of the system

(1.4) 𝑑𝛾

𝑑𝑠
= −∇𝑔𝛼𝛽

𝑠
𝑓𝛼𝛽(𝛾), 𝛾(−∞) = 𝑝𝛼, 𝛾(+∞) = 𝑝𝛽 ,

(see [32] for details). We use a brief notation HM*(𝑓) or HM*(𝑁) instead of
HM*(𝑁 : 𝑓). Morse homology groups HM*(𝑓) are isomorphic to singular homology
groups 𝐻*(𝑁 ;Z2) [21, 29, 32] (we will sometimes identify Morse and singular
homologies).

Our first theorem gives isomorphisms between the Morse homology HM*(𝑁 : 𝑓)
and the Floer homology HF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻). These isomorphisms are essentially
different from ones defined in [26].

Theorem 1.1. There exist isomorphisms
Φ : HF𝑘(𝑜𝑀 , 𝜈*𝑁 : 𝐻) → HM𝑘(𝑁 : 𝑓),

Ψ : HM𝑘(𝑁 : 𝑓) → HF𝑘(𝑜𝑀 , 𝜈*𝑁 : 𝐻),
that are inverse to each other: Φ ∘ Ψ = I|𝐻𝑀 and Ψ ∘ Φ = I|𝐻𝐹 .

In order to obtain isomorphisms on homology level, we consider homomor-
phisms on chain complexes defined by counting the intersection number of the
space of gradient trajectories of function 𝑓 and the space of perturbed holomorphic
discs with boundary on the zero section 𝑜𝑀 and the conormal bundle 𝜈*𝑁 (see
Figure 1).

The main problem we need to overcome is that we have singular Lagrangian
boundary conditions on holomorphic discs since an intersection 𝑜𝑀 |𝑁 = 𝑜𝑀 ∩ 𝜈*𝑁
is not transverse.

Motivation for this isomorphism was the paper by Piunikhin, Salamon and
Schwarz [25], where they considered the Floer homology for periodic orbits, and the
paper by Katić and Milinković [15], where they gave a construction of Piunikhin–
Salamon–Schwarz isomorphisms in Lagrangian intersections Floer homology for a
cotangent bundle. They worked with the Floer homology generated by Hamiltonian
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Figure 1. Intersection of gradient trajectory and perturbed holo-
morphic disc

orbits that start and end on zero section 𝑜𝑀 . We obtain that isomorphism as special
case for 𝑁 = 𝑀 . Albers [2] constructed a PSS-type homomorphism (which is not
necessarily an isomorphism) in a more general symplectic manifold.

In [26] Poźniak constructed a different type of isomorphism between the Morse
homology HM*(𝑁 : 𝑓) and the Floer homology HF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻𝑓 ). Namely, he
used Hamiltonian 𝐻𝑓 that is an extension of a Morse function 𝑓 . We do not have
that kind of restriction, our Hamiltonian 𝐻 does not have to be an extension of a
Morse function 𝑓 .

Another advantage of using our isomorphism is its naturalness. When using
Poźniak’s type isomorphism, it is not obvious whether the diagram

HF*(𝐻𝛼) 𝑆𝛼𝛽

−−−−→ HF*(𝐻𝛽)⌃⎮⎮ ⌃⎮⎮
HM*(𝑓𝛼) 𝑇 𝛼𝛽

−−−−→ HM*(𝑓𝛽)

commutes, because different type of equations are used in definitions of 𝑆𝛼𝛽 and
𝑇𝛼𝛽 . If we use our, PSS–type, isomorphisms as vertical arrows, then we obtain
commutativity of the diagram above.

Theorem 1.2. The diagram

HF𝑘(𝑜𝑀 , 𝜈*𝑁 : 𝐻𝛼) 𝑆𝛼𝛽

−−−−→ HF𝑘(𝑜𝑀 , 𝜈*𝑁 : 𝐻𝛽)⌃⎮⎮Ψ𝛼

⌃⎮⎮Ψ𝛽

HM𝑘(𝑁 : 𝑓𝛼) 𝑇 𝛼𝛽

−−−−→ HM𝑘(𝑁 : 𝑓𝛽),
commutes.

Using the existence of PSS isomorphism, we can define conormal spectral in-
variants and prove some of their properties. Denote by 𝚤𝜆* : HF𝜆

*(𝐻) → HF*(𝐻)
the homomorphism induced by the inclusion map 𝚤𝜆 : CF𝜆

*(𝐻) → CF*(𝐻). For
𝛼 ∈ HM*(𝑁 : 𝑓) define a conormal spectral invariant

𝑙(𝛼; 𝑜𝑀 , 𝜈*𝑁 : 𝐻) = inf{𝜆 | Ψ(𝛼) ∈ im(𝚤𝜆*)}.
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Figure 2. Pair–of–pairs object that defines the product ⋆

Oh defined Lagrangian spectral invariants in [23] using the idea of Viterbo’s in-
variants for generating functions (see [34]). It turns out that those two invariants
are the same (under some normalizaton conditions), see [19, 20].

Following [3], we can define a natural homology action homomorphism of
HF*(𝑜𝑀 , 𝑜𝑀 ) on HF*(𝑜𝑀 , 𝜈*𝑁). Note that HF*(𝑜𝑀 , 𝑜𝑀 ) stands for the Floer ho-
mology for conormal bundle in a special case when 𝑀 = 𝑁 . This is a standard
product in Lagrangian Floer homology. Moreover, we can relate it, via the PSS iso-
morphism, to the action on the Morse side where it becomes the action of HM*(𝑀)
on HM*(𝑁) via the external intersection product. As a result we obtain a triangle
inequality for spectral invariants.

Theorem 1.3. Let 𝐻1, 𝐻2, 𝐻3 ∈ 𝐶∞
𝑐 ([0, 1] ×𝑇 *𝑀) be three Hamiltonians with

a compact support. Then, there exists a natural homology action homomorphism

⋆ : HF*(𝑜𝑀 , 𝑜𝑀 : 𝐻1) ⊗ HF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻2) → HF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻3).

The product ⋆, via the PSS, induces the exterior intersection product on the Morse
homology

· : HM*(𝑀) ⊗ HM*(𝑁) → HM*(𝑁),
i.e., for 𝛼 ∈ HM*(𝑀) and 𝛽 ∈ HM*(𝑁) it holds Ψ(𝛼 · 𝛽) = Ψ(𝛼) ⋆Ψ(𝛽).

Spectral invariants are subadditive with respect to the exterior intersection prod-
uct, for 𝛼 ∈ HM*(𝑀) and 𝛽 ∈ HM*(𝑁) such that 𝛼 · 𝛽 ̸= 0 it holds

(1.5) 𝑙(𝛼 · 𝛽; 𝑜𝑀 , 𝜈*𝑁 : 𝐻1♯𝐻2) 6 𝑙(𝛼; 𝑜𝑀 , 𝑜𝑀 : 𝐻1) + 𝑙(𝛽; 𝑜𝑀 , 𝜈*𝑁 : 𝐻2).

For the sake of completeness, we provide a construction of ⋆ in Section 5 al-
though it is well known. This product is defined by counting a pair-of-pants with
appropriate boundary conditions (see Figure 2). The exterior intersection prod-
uct in Morse homology is defined by counting gradient trees of appropriate Morse
functions (see Section 5 for the definition). The notion of the exterior intersection
product was studied in [5], Subsection 4.3.

If we put 𝛼 = [𝑀 ] ([𝑀 ] is the fundamental class) and 𝐻2 = 0 in (1.5), then we
conclude that conormal spectral invariants are bounded for every nonzero singular
homology class. The idea of this property came from Humilière, Leclercq and Sey-
faddini’s paper [13]. Note that the concatenation 𝐻♯0 is just a reparametrization
of 𝐻 and it does not change Hamiltonian orbits, Floer strip or spectral invariants.
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Figure 3. Holomorphic strip with a jump that defines the inclu-
sion morphism

Corollary 1.1. For every 𝛼 ∈ HM*(𝑁) r {0} it holds

𝑙(𝛼; 𝑜𝑀 , 𝜈*𝑀 : 𝐻) 6 𝑙([𝑀 ]; 𝑜𝑀 , 𝑜𝑀 : 𝐻).

Observing perturbed holomorphic strips with a jump on the upper boundary
(see Figure 3), we can define the inclusion morphism of the Floer homologies. Using
the PSS isomorphism, we obtain the inclusion morphism on the Morse side and the
appropriate inequality among spectral invariants.

Theorem 1.4. Let 𝐻 ∈ 𝐶∞
𝑐 ([0, 1] × 𝑇 *𝑀) be a compactly supported Hamil-

tonian. There exists a morphism 𝑚 : HF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻) → HF*(𝑜𝑀 , 𝑜𝑀 : 𝐻) in
Floer homology. On Morse homology level it holds Φ ∘𝑚 ∘ Ψ = 𝑖*, where 𝑖* is the
morphism induced by the inclusion 𝑖 : 𝑁 →˓ 𝑀 in the sense of Schwarz [32, Aux-
iliary Proposition 4.22]. This gives rise to the following inequality among spectral
invariants

(1.6) 𝑙(𝑖*(𝛼); 𝑜𝑀 , 𝑜𝑀 : 𝐻) 6 𝑙(𝛼; 𝑜𝑀 , 𝜈*𝑁 : 𝐻),

for every 𝛼 ∈ HM*(𝑁) r {0}.

Inequality (1.6) is expected because of the next observation. If 𝛼 is realized
at level 𝜆 in the filtered Lagrangian Floer homology HF𝜆

*(𝑜𝑀 , 𝜈*𝑁), then it is also
realized, via the inclusion, at the same level, in the homology HF𝜆

*(𝑜𝑀 , 𝑜𝑀 ).
It is obvious that the composition of morphisms ⋆ and 𝑚 lead to the product

on Lagrangian Floer homology. Via the PSS, we obtain the operation on Morse
homology.

Corollary 1.2. Let 𝐻1, 𝐻2, 𝐻3 ∈ 𝐶∞
𝑐 ([0, 1] × 𝑇 *𝑀) be three Hamiltonians

with compact support. Then, there exists a product

* : HF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻1) ⊗ HF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻2) → HF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻3),

in homology, defined by * = ⋆ ∘ (𝑚 ⊗ I). The product * induces the operation on
HM*(𝑁) via the PSS isomorphism as 𝛼 ∙𝛽 = Φ(Ψ(𝛼) * Ψ(𝛽)), for 𝛼, 𝛽 ∈ HM*(𝑁).

As a special case, when 𝑁 = 𝑀 , we obtain the product defined in [24] (also
discussed in [16]). We can see that * counts pair-of-pants with a boundary on
𝑜𝑀 ∪ 𝜈*𝑁 and a jump from 𝑜𝑀 to 𝜈*𝑁 on a slit of pants (see Figure 4). The
operation ∙ on HM*(𝑁) can be described as a composition of the inclusion and the
exterior intersection product.
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Figure 4. Pair–of–pants object that defines product on
HF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻)

The triangle inequality for conormal spectral invariant, with respect to ∙, fol-
lows directly from Theorem 1.3 and Theorem 1.4. Our inequality is a generalization
of the one made by Monzner, Vichery and Zapolsky in [22].

Corollary 1.3. Let us take two compactly supported Hamiltonians 𝐻,𝐻 ′ and
𝛼, 𝛽 ∈ HM*(𝑁) such that 𝛼 ∙ 𝛽 ̸= 0. Then

𝑙(𝛼 ∙ 𝛽; 𝑜𝑀 , 𝜈*𝑁 : 𝐻♯𝐻 ′) 6 𝑙(𝛼; 𝑜𝑀 , 𝜈*𝑁 : 𝐻) + 𝑙(𝛽; 𝑜𝑀 , 𝜈*𝑁 : 𝐻 ′).

This paper is organized as follows. In Section 2, we define diverse moduli spaces
and prove some of their properties. In Section 3, we present the construction of
PSS-type homomorphisms and we prove Theorem 1.1. Section 4 contains a proof of
Theorem 1.2. In the last section, we provide constructions of morphisms ⋆ and 𝑚,
and prove the mentioned inequalities among spectral invariants.

2. Holomorphic discs, gradient trajectories and moduli spaces

We start with a construction of mixed-type object space that we use for the
definition of Ψ and Φ. Let 𝑝 be a critical point of a Morse function 𝑓 . Morse
homology HM𝑘(𝑓) is graded by Morse index 𝑘 = 𝑚𝑓 (𝑝) of critical points.

To each element of CF*(𝐻), we can assign a solution of the Hamiltonian equa-
tion

(2.1) 𝑥̇ = 𝑋𝐻(𝑥), 𝑥(0) ∈ 𝑜𝑀 , 𝑥(1) ∈ 𝜈*𝑁.

For a solution 𝑥 of (2.1), there exists a canonically assigned Maslov index

𝜇𝑁 : CF*(𝐻) → 1
2Z,

see [23, 27, 28] for details. The Floer homology HF𝑘(𝐻) is graded by 𝑘 = 𝜇𝑁 (𝑥)+
1
2 dim𝑁 .

Let M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) be the space of pairs of maps

𝛾 : (−∞, 0] → 𝑁, 𝑢 : R × [0, 1] → 𝑇 *𝑀,

that satisfy
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Figure 5. M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) and M(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔)

𝑑𝛾

𝑑𝑠
= −∇𝑓(𝛾(𝑠)), 𝜕𝑢

𝜕𝑠
+ 𝐽

(︁𝜕𝑢
𝜕𝑡

−𝑋𝜌+
𝑅

𝐻(𝑢)
)︁

= 0,

𝐸(𝑢) =
∫︁∫︁

R×[0,1]
‖𝜕𝑠𝑢‖2

𝐽 𝑑𝑡 𝑑𝑠 < +∞,

𝑢(𝑠, 0) ∈ 𝑜𝑀 , 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 ∈ R,
𝛾(−∞) = 𝑝, 𝑢(+∞, 𝑡) = 𝑥(𝑡), 𝛾(0) = 𝑢(−∞),

where 𝑅 is a positive fixed number and 𝜌+
𝑅 : R → R is a smooth function such that

𝜌+
𝑅(𝑠) =

{︃
1, 𝑠 > 𝑅+ 1
0, 𝑠 6 𝑅.

The strip 𝑢 is holomorphic for 𝑠 6 𝑅 and has finite energy. So, 𝑢 admits a
unique continuous extension 𝑢(−∞) (see [18, Section 4.5] and [31, Theorem 3.1]).
The extension is a point that belongs to 𝑜𝑁 = 𝜈*𝑁 ∩ 𝑜𝑀 , and we can omit the
second argument of 𝑢(−∞).

Let M(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔) be the space of pairs of maps

𝛾 : [0,+∞) → 𝑁, 𝑢 : R × [0, 1] → 𝑇 *𝑀,

that satisfy

𝑑𝛾

𝑑𝑠
= −∇𝑓(𝛾(𝑠)), 𝜕𝑢

𝜕𝑠
+ 𝐽

(︁𝜕𝑢
𝜕𝑡

−𝑋𝜌−
𝑅

𝐻(𝑢)
)︁

= 0,

𝐸(𝑢) < +∞, 𝑢(𝑠, 0) ∈ 𝑜𝑀 , 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 ∈ R,
𝛾(+∞) = 𝑝, 𝑢(−∞, 𝑡) = 𝑥(𝑡), 𝛾(0) = 𝑢(+∞),

where 𝜌−
𝑅 : R → R is a smooth function such that

𝜌−
𝑅(𝑠) =

{︃
1, 𝑠 6 −𝑅− 1
0, 𝑠 > −𝑅.
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Proposition 2.1. For a generic Morse function 𝑓 and a generic compactly
supported Hamiltonian 𝐻, the set M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) is a smooth manifold of di-
mension 𝑚𝑓 (𝑝) − (𝜇𝑁 (𝑥) + 1

2 dim𝑁), and M(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔) is a smooth manifold
of dimension 𝜇𝑁 (𝑥) + 1

2 dim𝑁 −𝑚𝑓 (𝑝).

Proof. Let 𝑊𝑢(𝑝, 𝑓) be the unstable manifold associated to a critical point 𝑝
of a Morse function 𝑓 . We know that dim𝑊𝑢(𝑝, 𝑓) = 𝑚𝑓 (𝑝) [21].

Let M+(𝐻,𝐽 ;𝑥) be the set of solutions of

𝑢 : R × [0, 1] → 𝑇 *𝑀,
𝜕𝑢

𝜕𝑠
+ 𝐽

(︁𝜕𝑢
𝜕𝑡

−𝑋𝜌+
𝑅

𝐻(𝑢)
)︁

= 0, 𝐸(𝑢) < +∞,

𝑢(𝑠, 0) ∈ 𝑜𝑀 , 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 ∈ R, 𝑢(+∞, 𝑡) = 𝑥(𝑡).

The dimension of M+(𝐻,𝐽 ;𝑥) is dimM+(𝐻,𝐽 ;𝑥) = 1
2 dim𝑁 − 𝜇𝑁 (𝑥), see [23] for

details. We used the definition of Maslov index 𝜇𝑁 (𝑥) = 𝜇(𝐵Φ(R𝑚), 𝑉 Φ), where
Φ : 𝑥*𝑇 (𝑇 *𝑀) → [0, 1] × C𝑚 is any trivialization and

𝑉 Φ = Φ(𝑇𝑥(1)𝜈
*𝑁), 𝐵Φ(𝑡) = Φ ∘ 𝑇𝜑𝑡

𝐻 ∘ Φ−1.

For a generic choice of parameters, the evaluation map

𝐸𝑣 : 𝑊𝑢(𝑝, 𝑓) × M+(𝐻,𝐽 ;𝑥) → 𝑁 ×𝑁, 𝐸𝑣(𝛾, 𝑢) = (𝛾(0), 𝑢(−∞)),

is transversal to the diagonal, thus M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) = 𝐸𝑣−1(△) is a smooth
manifold of dimension

𝑚𝑓 (𝑝) + 1
2 dim𝑁 − 𝜇𝑁 (𝑥) − (2 dim𝑁 − dim𝑁) = 𝑚𝑓 (𝑝) − 1

2 dim𝑁 − 𝜇𝑁 (𝑥).

The proof for M(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔) is similar. �

We need some additional properties of the manifolds M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) and
M(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔). The set of solutions of (1.1) is denoted by M(𝑥, 𝑦;𝐻) and
M(𝑝, 𝑞; 𝑓) denotes the set of solutions of (1.3) (modulo R-action).

Proposition 2.2. Let 𝑓 be a generic Morse function and 𝐻 a generic com-
pactly supported Hamiltonian. If 𝑚𝑓 (𝑝) = 𝜇𝑁 (𝑥)+ 1

2 dim𝑁 , then M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽)
is a finite set. If 𝑚𝑓 (𝑝) = 𝜇𝑁 (𝑥) + 1

2 dim𝑁 + 1, then M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) is one-
dimensional manifold with topological boundary

𝜕M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) =
⋃︁

𝑚𝑓 (𝑞)=𝑚𝑓 (𝑝)−1

M(𝑝, 𝑞; 𝑓) × M(𝑞, 𝑓, 𝑔;𝑥,𝐻, 𝐽)

∪
⋃︁

𝜇𝑁 (𝑦)=𝜇𝑁 (𝑥)+1

M(𝑝, 𝑓, 𝑔; 𝑦,𝐻, 𝐽) × M(𝑦, 𝑥;𝐻).

Proof. Let (𝛾𝑛, 𝑢𝑛) be a sequence in M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) that has no 𝑊 1,2-
convergent subsequence. Since 𝑁 is compact, 𝛾𝑛(𝑡) is bounded for every 𝑡. The
sequence 𝛾𝑛 is equicontinuous because

𝑑(𝛾𝑛(𝑡1), 𝛾𝑛(𝑡2)) 6
∫︁ 𝑡2

𝑡1

‖𝛾̇(𝑠)‖ 𝑑𝑠
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6
√
𝑡2 − 𝑡1

√︃∫︁ 𝑡2

𝑡1

‖𝛾̇(𝑠)‖2 𝑑𝑠 =
√
𝑡2 − 𝑡1

√︃∫︁ 𝑡2

𝑡1

𝜕

𝜕𝑠
𝑓(𝛾𝑛(𝑠)) 𝑑𝑠

6
√
𝑡2−𝑡1

√︁
max
𝑥∈𝑁

𝑓(𝑥)−𝑓(𝛾𝑛(−∞)) =
√
𝑡2− 𝑡1

√︁
max
𝑥∈𝑁

𝑓(𝑥)−𝑓(𝑝).

It follows from the Arzelà–Ascoli theorem that 𝛾𝑛 has a subsequence converging
uniformly on compact sets. Since the sequence 𝛾𝑛 is a solution of the equation
𝛾̇𝑛 = −∇𝑓(𝛾𝑛), and the function 𝑓 is smooth, 𝛾𝑛 converges with all its derivatives
on compact subsets of (−∞, 0].

The energy of 𝑢𝑛 is uniformly bounded since

A𝐻(𝑥(𝑡)) = A𝜌+
𝑅

𝐻(𝑢𝑛(+∞), 𝑡) − A𝜌+
𝑅

𝐻(𝑢𝑛(−∞), 𝑡) =

= −𝐸(𝑢𝑛) +
∫︁ +∞

−∞

∫︁ 1

0
(𝜌+

𝑅(𝑠))′𝐻(𝑢𝑛(𝑠, 𝑡), 𝑡) 𝑑𝑡 𝑑𝑠.

The Hamiltonian 𝐻 has a compact support, (𝜌+
𝑅(𝑠))′ is nonzero only on [𝑅,𝑅+ 1],

so the last integral is uniformly bounded⃒⃒⃒⃒ ∫︁ +∞

−∞

∫︁ 1

0
(𝜌+

𝑅(𝑠))′𝐻(𝑢𝑛(𝑠, 𝑡), 𝑡) 𝑑𝑡 𝑑𝑠
⃒⃒⃒⃒
6 𝐶.

We have a sequence 𝑢𝑛 whose energy is uniformly bounded. From the Gromov
compactness [12], it follows that 𝑢𝑛 has a subsequence that converges together
with all derivatives on compact subsets of (R × [0, 1]) r {𝑧1, . . . , 𝑧𝑚}. Bubbles can
occur at 𝑧𝑖 if it is an interior point of R × [0, 1]. It is also possible that a bubble
appears at the boundary point 𝑧𝑘 as holomorphic disc with the boundary conditions
on zero section and conormal bundle. But in our case neither holomorphic spheres
nor discs appear. If 𝑣 : 𝑆2 → 𝑇 *𝑀 is a holomorphic sphere, then∫︁

𝑆2
‖𝑑𝑣‖2 =

∫︁
𝑆2
𝑣*𝜔 =

∫︁
𝜕𝑆2

𝑣*𝜆 = 0.

If 𝑣 : R × [0, 1] → 𝑇 *𝑀 is a holomorphic disc, then∫︁
R×[0,1]

‖𝑑𝑣‖2 =
∫︁
R×[0,1]

𝑣*𝜔 =
∫︁

𝜕(R×[0,1])
𝑣*𝜆 = 0,

since 𝜆 = 0 on 𝑜𝑀 and 𝜈*𝑁 .
So, (𝛾𝑛, 𝑢𝑛) has a subsequence which converges with all its derivatives uni-

formly on compact sets. From 𝐶∞
loc-convergence it follows 𝑊 1,2-convergence. Thus,

(𝛾𝑛, 𝑢𝑛) has a subsequence that converges to some element of M(𝑝𝑚, 𝑓, 𝑔;𝑥0, 𝐻, 𝐽).
Similarly as in [8, 14, 17, 30, 32], we conclude that the only loss of compactness
is a “trajectory breaking" in the following way⋃︁

M(𝑝, 𝑝1; 𝑓) × · · · × M(𝑝𝑚−1, 𝑝𝑚; 𝑓) × M(𝑝𝑚, 𝑓, 𝑔;𝑥0, 𝐻, 𝐽)(2.2)

× M(𝑥0, 𝑥1;𝐻) × · · · × M(𝑥𝑙−1, 𝑥;𝐻).

Here, 𝑝, 𝑝1, . . . , 𝑝𝑚 are critical points of 𝑓 and 𝑥0, . . . , 𝑥𝑙−1, 𝑥 are Hamiltonian paths
with decreasing Morse and Maslov indices such that 𝑚𝑓 (𝑝𝑚) > 𝜇𝑁 (𝑥0) + 1

2 dim𝑁 .
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Therefore, we have that the boundary 𝜕M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) is a subset of union (2.2).
The other inclusion follows from the standard gluing arguments.

If 𝑚𝑓 (𝑝) = 𝜇𝑁 (𝑥) + 1
2 dim𝑁 , then M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) is a compact, zero-dimen-

sional manifold, so M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) has a finite number of elements.
If 𝑚𝑓 (𝑝) = 𝜇𝑁 (𝑥) + 1

2 dim𝑁 + 1 then the boundary of M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) can
contain an element of a set M(𝑝, 𝑞; 𝑓)×M(𝑞, 𝑓, 𝑔;𝑥,𝐻, 𝐽) for some 𝑞 ∈ Crit(𝑓) such
that 𝑚𝑓 (𝑞) = 𝑚𝑓 (𝑝) − 1 or an element of a set M(𝑝, 𝑓, 𝑔; 𝑦,𝐻, 𝐽) × M(𝑦, 𝑥;𝐻) for
some Hamiltonian orbit 𝑦, such that 𝜇𝑁 (𝑦) = 𝜇𝑁 (𝑥) + 1. �

We have a similar proposition for M(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔).

Proposition 2.3. Let 𝑓 be a generic Morse function and 𝐻 a generic com-
pactly supported Hamiltonian. If 𝑚𝑓 (𝑝) = 𝜇𝑁 (𝑥)+ 1

2 dim𝑁 , then M(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔)
is a finite set. If 𝑚𝑓 (𝑝) = 𝜇𝑁 (𝑥) + 1

2 dim𝑁 − 1, then M(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔) is one-
dimensional manifold with topological boundary

𝜕M(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔) =
⋃︁

𝑚𝑓 (𝑞)=𝑚𝑓 (𝑝)+1

M(𝑥,𝐻, 𝐽 ; 𝑞, 𝑓, 𝑔) × M(𝑞, 𝑝; 𝑓)

∪
⋃︁

𝜇𝑁 (𝑦)=𝜇𝑁 (𝑥)−1

M(𝑥, 𝑦;𝐻) × M(𝑦,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔).

Now, we define some auxiliary manifolds that we use to prove that the compo-
sition Φ ∘ Ψ is the identity (see Theorem 1.1). Let 𝑅 > 0 be a fixed number. For
𝑝, 𝑞 ∈ Crit(𝑓) we define M𝑅(𝑝, 𝑞, 𝑓 ;𝐻) as the set of maps

𝛾− : (−∞, 0] → 𝑁, 𝛾+ : [0,+∞) → 𝑁, 𝑢 : R × [0, 1] → 𝑇 *𝑀

such that
𝑑𝛾±

𝑑𝑠
= −∇𝑓(𝛾±), 𝜕𝑢

𝜕𝑠
+ 𝐽

(︁𝜕𝑢
𝜕𝑡

−𝑋𝜎𝑅𝐻(𝑢)
)︁

= 0, 𝐸(𝑢) < +∞,

𝛾−(−∞) = 𝑝, 𝛾+(+∞) = 𝑞, 𝑢(𝑠, 0) ∈ 𝑜𝑀 , 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 ∈ R,
𝑢(±∞, 𝑡) = 𝛾±(0),

where 𝜎𝑅 : R → [0, 1] is a smooth function such that

𝜎𝑅(𝑠) =
{︃

1, |𝑠| 6 𝑅
0, |𝑠| > 𝑅+ 1.

We also define its parameterized version
M(𝑝, 𝑞, 𝑓 ;𝐻) =

{︀
(𝑅, 𝛾−, 𝛾+, 𝑢) | (𝛾−, 𝛾+, 𝑢) ∈ M𝑅(𝑝, 𝑞, 𝑓 ;𝐻), 𝑅 > 𝑅0

}︀
,

(see Figure 6). From now on, whenever we define new moduli space, we omit the
argument 𝑔 and 𝐽 , although we know that a moduli space depend on a Riemannian
metric and on an almost complex structure. For a generic choice of parameters,
the set M(𝑝, 𝑞, 𝑓 ;𝐻) is an one-dimensional manifold if 𝑚𝑓 (𝑝) = 𝑚𝑓 (𝑞), and a zero-
dimensional manifold if 𝑚𝑓 (𝑝) = 𝑚𝑓 (𝑞) − 1.

Knowing the definitions of a broken gradient trajectory and a weak convergence
of gradient trajectories [32], we can define a broken holomorphic strip and a weak
convergence of holomorphic strips [30].
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Figure 6. M𝑅(𝑝, 𝑞, 𝑓 ;𝐻)

Definition 2.1. A broken (perturbed) holomorphic strip 𝑣 is a pair (𝑣1, 𝑣2)
of (perturbed) holomorphic strips such that 𝑣1(+∞, 𝑡) = 𝑣2(−∞, 𝑡). A sequence
of perturbed holomorphic strips 𝑢𝑛 : R × [0, 1] → 𝑇 *𝑀 is said to converge weakly
to a broken trajectory 𝑣 if there exists a sequence of translations 𝜙𝑖

𝑛 : R × [0, 1] →
R × [0, 1], 𝑖 = 1, 2, such that 𝑢𝑛 ∘ 𝜙𝑖

𝑛 converges to 𝑣𝑖 uniformly with all derivatives
on a compact subset of R × [0, 1]. We say that an element of mixed type (𝛾, 𝑢) is
a broken element if 𝛾 is a broken trajectory or 𝑢 is a broken holomorphic strip.

The following proposition gives us a boundary of a one-dimensional manifold
M(𝑝, 𝑞, 𝑓 ;𝐻).

Proposition 2.4. Let 𝑝, 𝑞∈CM𝑘(𝑓). The topological boundary of M(𝑝, 𝑞, 𝑓 ;𝐻)
can be identified with

𝜕M(𝑝, 𝑞, 𝑓 ;𝐻) = M𝑅0(𝑝, 𝑞, 𝑓 ;𝐻) ∪
⋃︁

𝑚𝑓 (𝑟)=𝑘−1

M(𝑝, 𝑟; 𝑓) × M(𝑟, 𝑞, 𝑓 ;𝐻)

∪
⋃︁

𝑚𝑓 (𝑟)=𝑘+1

M(𝑝, 𝑟, 𝑓 ;𝐻) × M(𝑟, 𝑞; 𝑓)

∪
⋃︁

𝜇𝑁 (𝑥)+dim 𝑁/2=𝑘

M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) × M(𝑥,𝐻, 𝐽 ; 𝑞, 𝑓, 𝑔).

Proof. Consider a sequence (𝑅𝑛, 𝛾
𝑛
−, 𝛾

𝑛
+, 𝑢𝑛) in M(𝑝, 𝑞, 𝑓 ;𝐻). It either 𝑊 1,2-

converges to an element of the same moduli space or one of the following four
statements holds:
(1) There is a subsequence such that 𝑅𝑛𝑘

→ 𝑅0 and (𝛾𝑛𝑘
− , 𝛾𝑛𝑘

+ , 𝑢𝑛𝑘
) converges to

(𝛾−, 𝛾+, 𝑢) ∈ M𝑅0(𝑝, 𝑞, 𝑓 ;𝐻).
(2) There is a subsequence of (𝑅𝑛, 𝛾

𝑛
−, 𝛾

𝑛
+, 𝑢𝑛) that converges to a broken trajectory

in M(𝑝, 𝑟; 𝑓) × M(𝑟, 𝑞, 𝑓 ;𝐻). The subsequence (𝛾𝑛𝑘
+ , 𝑢𝑛𝑘

) converges in 𝑊 1,2

topology and 𝛾𝑛𝑘
− converges weakly.

(3) There is a subsequence that converges to a broken trajectory in M(𝑝, 𝑟, 𝑓 ;𝐻)×
M(𝑟, 𝑞; 𝑓), similarly to (2).
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(4) There is a subsequence such that 𝑅𝑛𝑘
→ +∞ and (𝛾𝑛𝑘

− , 𝛾𝑛𝑘
+ , 𝑢𝑛𝑘

) converges
weakly to a broken element of M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) × M(𝑥,𝐻, 𝐽 ; 𝑞, 𝑓, 𝑔).

If 𝑅𝑛 is bounded, then we can find a compact 𝐾 such that {𝑅𝑛} ⊂ 𝐾. The
family 𝜌𝑅 can be chosen to depend continuously on 𝑅, so all estimates in Propo-
sition 2.2 hold uniformly on 𝑅 ∈ 𝐾. In a similar way to Proposition 2.2, we con-
clude that (𝛾𝑛

−, 𝛾
𝑛
+, 𝑢𝑛) has a subsequence that converges locally uniformly. So, if

(𝑅𝑛, 𝛾
𝑛
−, 𝛾

𝑛
+, 𝑢𝑛) does not converge to an element of M(𝑝, 𝑞, 𝑓 ;𝐻), then 𝑅𝑛 → 𝑅0 or

𝑅𝑛 → 𝑅 > 𝑅0 (𝑅𝑛 denotes the subsequence, as well). If the first case, (𝛾𝑛
−, 𝛾

𝑛
+, 𝑢𝑛)

converges in 𝑊 1,2 topology, and in the second one (𝛾𝑛
−, 𝛾

𝑛
+, 𝑢𝑛) converges to a bro-

ken trajectory. Since the dimension of M(𝑝, 𝑞, 𝑓 ;𝐻) is 1, it can break only once.
The breaking can happen on trajectories 𝛾𝑛

− or 𝛾𝑛
+ and not on the disc. The se-

quence 𝑢𝑛 cannot converge to a broken disc because the nonholomorphic part of
the domain is compact and 𝑢𝑛 converges there. If it breaks on the holomorphic
part, then we obtain a solution of a system

𝑣 : R × [0, 1] → 𝑇 *𝑀,
𝜕𝑣

𝜕𝑠
+ 𝐽

𝜕𝑣

𝜕𝑡
= 0,

𝑣(R × {0}) ⊂ 𝑜𝑀 , 𝑣(R × {1}) ⊂ 𝜈*𝑁.

We have already seen that all such solutions are constant, so 𝑢𝑛 cannot break
on the holomorphic part either. In this way, we covered the first three cases. The
fourth case arises if the sequence 𝑅𝑛 is not bounded. We can find a subsequence
𝑅𝑛 → +∞. Then the discs

𝑢−
𝑛 (𝑠, 𝑡) := 𝑢𝑛(𝑠−𝑅𝑛 −𝑅0 − 1, 𝑡), 𝑢+

𝑛 (𝑠, 𝑡) := 𝑢𝑛(𝑠+𝑅𝑛 +𝑅0 + 1, 𝑡),

converge locally uniformly with all derivatives to some 𝑢− and 𝑢+, respectively.
These discs are solutions of the system

𝜕𝑢±

𝜕𝑠
+ 𝐽

(︁𝜕𝑢±

𝜕𝑡
−𝑋𝜌±

𝑅0
(𝑢±)

)︁
= 0,

𝑢±(R × {0}) ⊂ 𝑜𝑀 , 𝑢±(R × {1}) ⊂ 𝜈*𝑁,

𝑢±(∓∞, 𝑡) = 𝑥(𝑡), 𝑢±(±∞, 𝑡) = 𝛾±(0).

The sequences 𝛾𝑛
± cannot break because of dimensional reason, so they converge to

some trajectories 𝛾±.
Conversely, for each broken trajectory of some of the types

(𝛾, 𝛾−, 𝛾+, 𝑢) ∈ M(𝑝, 𝑟; 𝑓) × M(𝑟, 𝑞, 𝑓 ;𝐻),
(𝛾−, 𝛾+, 𝑢, 𝛾) ∈ M(𝑝, 𝑟, 𝑓 ;𝐻) × M(𝑟, 𝑞; 𝑓),
(𝛾1, 𝑢1, 𝛾2, 𝑢2) ∈ M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) × M(𝑥,𝐻, 𝐽 ; 𝑞, 𝑓, 𝑔),

there is a sequence in M(𝑝, 𝑞, 𝑓 ;𝐻) that converges weakly to a corresponding broken
trajectory. The proof is based on the implicit-function theorem and pregluing and
gluing techniques. �

We continue with the construction of the auxiliary manifold, again with the
variable domain, that now connects the Hamiltonian orbits. Fix an 𝜀 > 0. Consider
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Figure 7. M𝜀(𝑥, 𝑦,𝐻; 𝑓)

the moduli space M𝜀(𝑥, 𝑦,𝐻; 𝑓) defined as the set of maps
𝑢± : R × [0, 1] → 𝑇 *𝑀, 𝛾 : [−𝜀, 𝜀] → 𝑁

that satisfy
𝜕𝑢±

𝜕𝑠
+ 𝐽

(︁𝜕𝑢±

𝜕𝑡
−𝑋𝜌±

𝑅
𝐻(𝑢±)

)︁
= 0, 𝑑𝛾

𝑑𝑠
= −∇𝑓(𝛾),

𝐸(𝑢±) < +∞, 𝑢±(𝑠, 0) ∈ 𝑜𝑀 , 𝑢±(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 ∈ R,
𝑢−(−∞, 𝑡) = 𝑥(𝑡), 𝑢+(+∞, 𝑡) = 𝑦(𝑡), 𝑢∓(±∞) = 𝛾(∓𝜀),

(see Figure 7) and consider the moduli space
M(𝑥, 𝑦,𝐻; 𝑓) =

{︀
(𝜀, 𝑢−, 𝑢+, 𝛾) | (𝑢−, 𝑢+, 𝛾) ∈ M𝜀(𝑥, 𝑦,𝐻; 𝑓), 𝜀 ∈ [𝜀0, 𝜀1]

}︀
,

where 𝜀0 and 𝜀1 are fixed positive numbers.
For 𝜇𝑁 (𝑦) = 𝜇𝑁 (𝑥) + 1, M(𝑥, 𝑦,𝐻; 𝑓) is a zero-dimensional manifold. If

𝜇𝑁 (𝑦) = 𝜇𝑁 (𝑥), then M(𝑥, 𝑦,𝐻; 𝑓) is a one-dimensional manifold and we can
describe its boundary.

Proposition 2.5. Let 𝑥, 𝑦 ∈ CF𝑘(𝐻). Then the topological boundary of
M(𝑥, 𝑦,𝐻; 𝑓) can be identified with

𝜕M(𝑥, 𝑦,𝐻; 𝑓) = M𝜀1(𝑥, 𝑦,𝐻; 𝑓) ∪ M𝜀0(𝑥, 𝑦,𝐻; 𝑓)

∪
⋃︁

𝜇𝑁 (𝑧)=𝜇𝑁 (𝑥)−1

M(𝑥, 𝑧;𝐻) × M(𝑧, 𝑦,𝐻; 𝑓)

∪
⋃︁

𝜇𝑁 (𝑧)=𝜇𝑁 (𝑥)+1

M(𝑥, 𝑧,𝐻; 𝑓) × M(𝑧, 𝑦;𝐻).

Proof. Let us take a sequence (𝜀𝑛, 𝑢
𝑛
−, 𝑢

𝑛
+, 𝛾𝑛) ∈ M(𝑥, 𝑦,𝐻; 𝑓) that has no

convergent subsequence in 𝑊 1,2-topology. Since a sequence 𝜀𝑛 is bounded, all
uniform estimates for 𝑢𝑛

±, 𝛾𝑛 hold uniformly on 𝜀 (see Proposition 2.2). Hence,
the sequences 𝑢𝑛

−, 𝑢
𝑛
+ and 𝛾𝑛 converge locally uniformly and (𝑢𝑛

−, 𝑢
𝑛
+, 𝛾𝑛) can break

only once (for dimensional reason). The domain of 𝛾𝑛 is bounded, so the trajectory
𝛾𝑛 cannot break. The only remaining possibilities are:
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(1) There is a subsequence which converges to an element of M𝜀1(𝑥, 𝑦,𝐻; 𝑓) or
M𝜀0(𝑥, 𝑦,𝐻; 𝑓).

(2) There is a subsequence which converges weakly to an element of M(𝑥, 𝑧;𝐻)×
M(𝑧, 𝑦,𝐻; 𝑓).

(3) There is a subsequence which converges weakly to an element of M(𝑥, 𝑧,𝐻; 𝑓)
× M(𝑧, 𝑦;𝐻). �

Now, we define moduli space similar to M(𝑝, 𝑞, 𝑓 ;𝐻), except that we are not
using a fixed Hamiltonian 𝐻, but a homotopy of Hamiltonians 𝐻𝛿, 0 6 𝛿 6 1, that
connects the given Hamiltonians 𝐻0 and 𝐻1,

M(𝑝, 𝑞, 𝑓 ;𝐻𝛿) =
{︀

(𝛿, 𝛾−, 𝛾+, 𝑢) | (𝛾−, 𝛾+, 𝑢) ∈ M𝑅0(𝑝, 𝑞, 𝑓 ;𝐻𝛿)), 0 6 𝛿 6 1
}︀
.

The dimension of this manifold is 𝑚𝑓 (𝑝)−𝑚𝑓 (𝑞)+1, and its boundary is described
in the following proposition.

Proposition 2.6. Let 𝑝, 𝑞 ∈ CM𝑘(𝑓). Then the topological boundary of the
one-dimensional manifold M(𝑝, 𝑞, 𝑓 ;𝐻𝛿) can be identified with

𝜕M(𝑝, 𝑞, 𝑓 ;𝐻𝛿) = M𝑅0(𝑝, 𝑞, 𝑓 ;𝐻0) ∪ M𝑅0(𝑝, 𝑞, 𝑓 ;𝐻1)

∪
⋃︁

𝑚𝑓 (𝑟)=𝑘−1

M(𝑝, 𝑟; 𝑓) × M(𝑟, 𝑞, 𝑓 ;𝐻𝛿)

∪
⋃︁

𝑚𝑓 (𝑟)=𝑘+1

M(𝑝, 𝑟, 𝑓 ;𝐻𝛿) × M(𝑟, 𝑞; 𝑓).

Proof. The proof is essentially the same as for Proposition 2.4. �

So far, we have discussed moduli spaces defined by a family of Hamiltonians
with a fixed Morse function 𝑓 . It will be useful to consider moduli spaces similar
to M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽), that depend on a family of Morse functions and a family of
Hamiltonians. Let (𝑓𝛼𝛽

𝑠,𝛿 , 𝐻
𝛼𝛽
𝑠,𝛿 ), 0 6 𝛿 6 1, be a homotopy connecting (𝑓𝛼, 𝐻𝛼𝛽

𝑠 ) for
𝛿 = 0 and (𝑓𝛼𝛽

𝑠 , 𝐻𝛽) for 𝛿 = 1. Here

𝑓𝛼𝛽
𝑠 =

{︃
𝑓𝛼, 𝑠 6 −𝑇 − 1
𝑓𝛽 , 𝑠 > −𝑇

and 𝐻𝛼𝛽
𝑠 =

{︃
𝐻𝛼, 𝑠 6 𝑇

𝐻𝛽 , 𝑠 > 𝑇 + 1

are homotopies connecting the Morse functions 𝑓𝛼, 𝑓𝛽 , and the Hamiltonians 𝐻𝛼,
𝐻𝛽 , respectively

We choose a homotopy (𝑓𝛼𝛽
𝑠,𝛿 , 𝐻

𝛼𝛽
𝑠,𝛿 ) such that for any 𝛿 and 𝑠 negative (positive)

enough, 𝑓𝛼𝛽
𝑠,𝛿 is equal to 𝑓𝛼 (𝐻𝛼𝛽

𝑠,𝛿 is equal to 𝐻𝛽). In the same way we choose a
homotopy (𝑔𝛼𝛽

𝑠,𝛿 , 𝐽
𝛼𝛽
𝑠,𝛿 ). Let ̂︀M(𝑝𝛼, 𝑓𝛼𝛽

𝑠,𝛿 ;𝑥𝛽 , 𝐻𝛼𝛽
𝑠,𝛿 ) be the set of the triples (𝛿, 𝛾, 𝑢)

such that
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𝛾 : (−∞, 0] → 𝑁, 𝑢 : R × [0, 1] → 𝑇 *𝑀,
𝑑𝛾

𝑑𝑠
= −∇𝑔𝛼𝛽

𝑠,𝛿
𝑓𝛼𝛽

𝑠,𝛿 (𝛾(𝑠)),

𝜕𝑢

𝜕𝑠
+ 𝐽𝛼𝛽

𝑠,𝛿

(︁𝜕𝑢
𝜕𝑡

−𝑋𝜌+
𝑅

𝐻𝛼𝛽
𝑠,𝛿

(𝑢)
)︁

= 0, 𝐸(𝑢) < +∞, 𝛾(−∞) = 𝑝𝛼,(2.3)

𝑢(𝑠, 0) ∈ 𝑜𝑀 , 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 ∈ R, 𝑢(+∞, 𝑡) = 𝑥𝛽(𝑡), 𝛾(0) = 𝑢(−∞).

The dimension of this manifold is 𝑚𝑓𝛼(𝑝𝛼) − (𝜇𝑁 (𝑥𝛽) + 1
2 dim𝑁) + 1. We also

define the moduli space M(𝑝𝛼, 𝑓𝛼𝛽
𝑠 ;𝑥𝛽 , 𝐻𝛽) as the set of pairs (𝛾, 𝑢) that satisfy

𝛾 : (−∞, 0] → 𝑁, 𝑢 : R × [0, 1] → 𝑇 *𝑀,
𝑑𝛾

𝑑𝑠
= −∇𝑔𝛼𝛽

𝑠
𝑓𝛼𝛽

𝑠 (𝛾(𝑠)),

𝜕𝑢

𝜕𝑠
+ 𝐽𝛽

(︁𝜕𝑢
𝜕𝑡

−𝑋𝜌+
𝑅

𝐻𝛽 (𝑢)
)︁

= 0, 𝐸(𝑢) < +∞, 𝛾(−∞) = 𝑝𝛼,

𝑢(𝑠, 0) ∈ 𝑜𝑀 , 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 ∈ R, 𝑢(+∞, 𝑡) = 𝑥𝛽(𝑡), 𝛾(0) = 𝑢(−∞).

Let M(𝑝𝛼, 𝑓𝛼;𝑥𝛽 , 𝐻𝛼𝛽
𝑠 ) be the set of maps 𝛾 : (−∞, 0] → 𝑁, 𝑢 : R × [0, 1] → 𝑇 *𝑀

such that
𝑑𝛾

𝑑𝑠
= −∇𝑔𝛼𝑓𝛼(𝛾), 𝜕𝑢

𝜕𝑠
+ 𝐽𝛼𝛽

𝑠

(︁𝜕𝑢
𝜕𝑡

−𝑋𝜌+
𝑅

𝐻𝛼𝛽
𝑠

(𝑢)
)︁

= 0,

𝐸(𝑢) < +∞, 𝛾(−∞) = 𝑝𝛼, 𝛾(0) = 𝑢(−∞)(2.4)
𝑢(𝑠, 0) ∈ 𝑜𝑀 , 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 ∈ R, 𝑢(+∞, 𝑡) = 𝑥𝛽(𝑡).

The manifolds M(𝑝𝛼, 𝑓𝛼𝛽
𝑠 ;𝑥𝛽 , 𝐻𝛽) and M(𝑝𝛼, 𝑓𝛼;𝑥𝛽 , 𝐻𝛼𝛽

𝑠 ) are the two com-
ponents of a boundary 𝜕 ̂︀M(𝑝𝛼, 𝑓𝛼𝛽

𝑠,𝛿 ;𝑥𝛽 , 𝐻𝛼𝛽
𝑠,𝛿 ) which we completely describe in the

next proposition.
Proposition 2.7. Let 𝑚𝑓𝛼(𝑝𝛼) = 𝜇𝑁 (𝑥𝛽) + 1

2 dim𝑁 . Then the topological
boundary of one-dimensional manifold ̂︀M(𝑝𝛼, 𝑓𝛼𝛽

𝑠,𝛿 ;𝑥𝛽 , 𝐻𝛼𝛽
𝑠,𝛿 ) can be identified with

𝜕 ̂︀M(𝑝𝛼, 𝑓𝛼𝛽
𝑠,𝛿 ;𝑥𝛽 , 𝐻𝛼𝛽

𝑠,𝛿 ) = M(𝑝𝛼, 𝑓𝛼𝛽
𝑠 ;𝑥𝛽 , 𝐻𝛽) ∪ M(𝑝𝛼, 𝑓𝛼;𝑥𝛽 , 𝐻𝛼𝛽

𝑠 )

∪
⋃︁

𝑚𝑓𝛼 (𝑞𝛼)=𝑚𝑓𝛼 (𝑝𝛼)−1

M(𝑝𝛼, 𝑞𝛼; 𝑓𝛼) × ̂︀M(𝑞𝛼, 𝑓𝛼𝛽
𝑠,𝛿 ;𝑥𝛽 , 𝐻𝛼𝛽

𝑠,𝛿 )

∪
⋃︁

𝜇𝑁 (𝑦𝛽)=𝜇𝑁 (𝑥𝛽)+1

̂︀M(𝑝𝛼, 𝑓𝛼𝛽
𝑠,𝛿 ; 𝑦𝛽 , 𝐻𝛼𝛽

𝑠,𝛿 ) × M(𝑦𝛽 , 𝑥𝛽 ;𝐻𝛽).

Proof. The proof is essentially the same as for Proposition 2.4. �

3. Isomorphism

We saw in Propositions 2.2 and 2.3 that M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) and M(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔)
are finite sets if 𝑚𝑓 (𝑝) = 𝜇𝑁 (𝑥) + 1

2 dim𝑁 . Denote their cardinal numbers (mod-
ulo 2) by 𝑛(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) and 𝑛(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔) and define homomorphisms on
generators:

𝜑 : CF𝑘(𝐻) → CM𝑘(𝑓), 𝜑(𝑥) =
∑︁

𝑚𝑓 (𝑝)=𝑘

𝑛(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔) 𝑝,

𝜓 : CM𝑘(𝑓) → CF𝑘(𝐻), 𝜓(𝑝) =
∑︁

𝜇𝑁 (𝑥)=𝑘− 1
2 dim 𝑁

𝑛(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽)𝑥.
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Proposition 3.1. The homomorphisms 𝜑 and 𝜓 are well defined chain maps.

Proof. It follows from Propositions 2.2, 2.3 and from the way in which the
chain complexes CM*(𝑓) and CF*(𝐻) are graded that these homomorphisms are
well defined. We prove that (𝜑 ∘ 𝜕𝐹 − 𝜕𝑀 ∘ 𝜑)(𝑥) = 0 for all 𝑥 ∈ CF𝑘(𝐻). We have

(𝜑 ∘ 𝜕𝐹 − 𝜕𝑀 ∘ 𝜑)(𝑥)

=
∑︁

𝑚𝑓 (𝑞)=𝑘−1

(︂ ∑︁
𝜇𝑁 (𝑦)+dim 𝑁/2=𝑘−1

𝑛(𝑥, 𝑦;𝐻)𝑛(𝑦,𝐻, 𝐽 ; 𝑞, 𝑓, 𝑔)
)︂
𝑞

−
∑︁

𝑚𝑓 (𝑞)=𝑘−1

(︂ ∑︁
𝑚𝑓 (𝑝)=𝑘

𝑛(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔)𝑛(𝑝, 𝑞; 𝑓)
)︂
𝑞.

Let 𝑝 ∈ CM𝑘(𝑓), 𝑞 ∈ CM𝑘−1(𝑓) and 𝑦 ∈ CF𝑘−1(𝐻). From Proposition 2.3 it
follows ∑︁

𝜇𝑁 (𝑦)+dim 𝑁/2=𝑘−1

𝑛(𝑥, 𝑦;𝐻)𝑛(𝑦,𝐻, 𝐽 ; 𝑞, 𝑓, 𝑔)

−
∑︁

𝑚𝑓 (𝑝)=𝑘

𝑛(𝑥,𝐻, 𝐽 ; 𝑝, 𝑓, 𝑔)𝑛(𝑝, 𝑞; 𝑓) = 0,

since it is the number (modulo 2) of ends of the one-dimensional manifold

M(𝑥,𝐻, 𝐽 ; 𝑞, 𝑓, 𝑔).

So, (𝜑 ∘ 𝜕𝐹 − 𝜕𝑀 ∘ 𝜑)(𝑥) = 0.
The proof of the identity 𝜓 ∘ 𝜕𝑀 = 𝜕𝐹 ∘ 𝜓 is analogous. �

From the previous proposition, it follows that 𝜑 and 𝜓 induce homomorphisms

Φ : HF𝑘(𝐻) → HM𝑘(𝑓), Ψ : HM𝑘(𝑓) → HF𝑘(𝐻).

in homology. They are PSS-type isomorphisms. Now, we can prove Theorem 1.1.
From the fact that these homomorphisms are inverse to each other, it immediately
follows that they are isomorphisms. In order to show this, we prove that 𝜑 ∘𝜓 and
𝜓 ∘ 𝜑 are maps, chain homotopic to the identity.

Proof of Theorem 1.1. If we look at a composition of homomorphisms 𝜑
and 𝜓,

𝜑 ∘ 𝜓(𝑝) =
∑︁

𝑚𝑓 (𝑞)=𝑘

(︂ ∑︁
𝜇𝑁 (𝑥)+dim 𝑁/2=𝑘

𝑛(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽)𝑛(𝑥,𝐻, 𝐽 ; 𝑞, 𝑓, 𝑔)
)︂
𝑞,

we can see that
∑︀

𝑥 𝑛(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽)𝑛(𝑥,𝐻, 𝐽 ; 𝑞, 𝑓, 𝑔) is the number of points of the
set

⋃︀
𝑥 M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) × M(𝑥,𝐻, 𝐽 ; 𝑞, 𝑓, 𝑔), which is a component of the bound-

ary 𝜕M(𝑝, 𝑞, 𝑓 ;𝐻).

Similarly to [15] we define homomorphisms 𝑙 and 𝑗,

𝑙 : CM𝑘(𝑓) → CM𝑘(𝑓), 𝑙(𝑝) =
∑︁

𝑚𝑓 (𝑞)=𝑘

𝑛(𝑝, 𝑞, 𝑓 ;𝐻) 𝑞,
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𝑗 : CM𝑘(𝑓) → CM𝑘+1(𝑓), 𝑗(𝑝) =
∑︁

𝑚𝑓 (𝑟)=𝑘+1

𝑛(𝑝, 𝑟, 𝑓 ;𝐻) 𝑟.

Here 𝑛(𝑝, 𝑞, 𝑓 ;𝐻) is the number of intersections of the space of perturbed holomor-
phic discs with the unstable manifold 𝑊𝑢(𝑝, 𝑓) and the stable manifold 𝑊 𝑠(𝑞, 𝑓).
We consider discs with one half of the boundary on the zero-section 𝑜𝑀 , and the
other half on the conormal bundle 𝜈*𝑁 . In other words, 𝑛(𝑝, 𝑞, 𝑓 ;𝐻) is the number
of elements of M𝑅0(𝑝, 𝑞, 𝑓 ;𝐻). By 𝑛(𝑝, 𝑟, 𝑓 ;𝐻) we denote the number of elements
of a zero-dimensional manifold M(𝑝, 𝑟, 𝑓 ;𝐻). The sum∑︁

𝑚𝑓 (𝑟)=𝑘−1

𝑛(𝑝, 𝑟; 𝑓)𝑛(𝑟, 𝑞, 𝑓 ;𝐻)

corresponds to the sum that occurs in 𝑗 ∘ 𝜕𝑀 , and∑︁
𝑚𝑓 (𝑟)=𝑘+1

𝑛(𝑝, 𝑟, 𝑓 ;𝐻)𝑛(𝑟, 𝑞; 𝑓)

corresponds to the sum in 𝜕𝑀 ∘ 𝑗. From Proposition 2.4, it follows

𝜑 ∘ 𝜓 − 𝑙 = 𝜕𝑀 ∘ 𝑗 + 𝑗 ∘ 𝜕𝑀 .

Now, we prove that homomorphism 𝐿 : HM𝑘(𝑓) → HM𝑘(𝑓), in homology, induced
by the chain homomorphism 𝑙, does not depend on the Hamiltonian 𝐻. Let 𝐻0
and 𝐻1 be Hamiltonians and 𝐻𝛿, 0 6 𝛿 6 1, a homotopy between them; 𝑙0 and 𝑙1
are chain homomorphisms corresponding to 𝐻0 and 𝐻1. From Proposition 2.6 we
get the relation 𝑙1 − 𝑙0 = 𝜕𝑀 ∘ 𝑗𝛿 + 𝑗𝛿 ∘ 𝜕𝑀 , where

𝑗𝛿 : CM𝑘(𝑓) → CM𝑘+1(𝑓), 𝑗𝛿(𝑝) =
∑︁

𝑚𝑓 (𝑟)=𝑘+1

𝑛(𝑝, 𝑟, 𝑓 ;𝐻𝛿) 𝑟.

Here, 𝑛(𝑝, 𝑟, 𝑓 ;𝐻𝛿) is the number of elements of M(𝑝, 𝑟, 𝑓 ;𝐻𝛿). If we choose a
homotopy between our Hamiltonian 𝐻 and 0, then we conclude that the map 𝑙 is
chain homotopic to the map 𝑖 : CM𝑘(𝑓) → CM𝑘(𝑓), 𝑖(𝑝) =

∑︀
𝑚𝑓 (𝑞)=𝑘 𝑛(𝑝, 𝑞, 𝑓 ; 0) 𝑞.

Thus, 𝐿 and the map 𝐼, induced by 𝑖, are the same maps in homology. We explained
above that unperturbed holomorphic disc, with one half of the boundary on the
zero-section and the other half on the conormal bundle, is constant. It follows that
𝑛(𝑝, 𝑞, 𝑓 ; 0) is the number of points in 𝑊𝑢(𝑝, 𝑓) ∩ 𝑊 𝑠(𝑞, 𝑓). Considering Morse
indices of 𝑝 and 𝑞, we get 𝐼 = I.

We use the same idea to prove Ψ ∘ Φ = I. The composition 𝜓 ∘ 𝜑 is chain
homotopic to a chain homomorphism 𝑟 : CF𝑘(𝐻) → CF𝑘(𝐻) which induces the
identity in homology. If we denote by 𝑛𝜀(𝑥, 𝑦,𝐻; 𝑓) the number of elements of the
zero-dimensional manifold M𝜀(𝑥, 𝑦,𝐻; 𝑓), then the map analogous to 𝑙 is

𝑟(𝑥) =
∑︁

𝜇𝑁 (𝑦)=𝜇𝑁 (𝑥)

𝑛𝜀(𝑥, 𝑦,𝐻; 𝑓) 𝑦.

Similarly to the first part of the proof, a homomorphism in homology induced by 𝑟
is independent of the choice of 𝜀. Let 𝑟0 and 𝑟1 be homomorphisms corresponding
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Figure 8. ̃︀M(𝑥, 𝑦;𝐻)

to the values 𝜀0 and 𝜀1. We define a chain homomorphism

𝑠 : CF𝑘(𝐻) → CF𝑘+1(𝐻), 𝑠(𝑥) =
∑︁

𝜇𝑁 (𝑦)+dim 𝑁/2=𝑘+1

𝑛(𝑥, 𝑦,𝐻; 𝑓) 𝑦,

where 𝑛(𝑥, 𝑦,𝐻; 𝑓) denotes the number of elements of M(𝑥, 𝑦,𝐻; 𝑓). From Propo-
sition 2.5 we conclude that 𝑟0 −𝑟1 = 𝑠∘𝜕𝐹 +𝜕𝐹 ∘𝑠. If we pass to the limit as 𝜀 → 0
we get that 𝜓 ∘ 𝜑 if chain homotopic to the homomorphism̃︀𝑖 : CF𝑘(𝐻) → CF𝑘(𝐻), ̃︀𝑖(𝑥) =

∑︁
𝜇𝑁 (𝑦)+dim 𝑁/2=𝑘

̃︀𝑛(𝑥, 𝑦;𝐻) 𝑦.

Here ̃︀𝑛(𝑥, 𝑦;𝐻) is the number of elements of the zero-dimensional manifold ̃︀M(𝑥, 𝑦;𝐻)
defined as the set of pairs (𝑢−, 𝑢+) such that (see Figure 8)

𝑢± : R × [0, 1] → 𝑇 *𝑀, 𝐸(𝑢±) < ∞,

𝜕𝑢±

𝜕𝑠
+ 𝐽

(︁𝜕𝑢±

𝜕𝑡
−𝑋𝜌±

𝑅
𝐻(𝑢±)

)︁
= 0,

𝑢±(𝑠, 0) ∈ 𝑜𝑀 , 𝑢±(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 ∈ R,
𝑢−(−∞, 𝑡) = 𝑥(𝑡), 𝑢+(+∞, 𝑡) = 𝑦(𝑡),
𝑢−(+∞) = 𝑢+(−∞).

In the rest of the proof, we show that counting the number of elements of̃︀M(𝑥, 𝑦;𝐻) is the same as counting the pseudo holomorphic strips between 𝑥 and
𝑦 (at the homology level). The main idea is to show that ̃︀M is cobordant to the
manifold that consists of appropriate pseudo holomorphic strips.

We define auxiliary manifold M𝑅(𝑥, 𝑦;𝐻) as the set of all maps 𝑢 : R× [0, 1] →
𝑇 *𝑀 such that

𝜕𝑢

𝜕𝑠
+ 𝐽

(︁𝜕𝑢
𝜕𝑡

−𝑋𝜌𝑅𝐻(𝑢)
)︁

= 0,

𝑢(𝑠, 0) ∈ 𝑜𝑀 , 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 ∈ R,
𝑢(−∞, 𝑡) = 𝑥(𝑡), 𝑢(+∞, 𝑡) = 𝑦(𝑡).
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Its parameterised version is

M̌(𝑥, 𝑦;𝐻) = {(𝑅, 𝑢) | 𝑅 > 𝑅0, 𝑢 ∈ M𝑅(𝑥, 𝑦;𝐻)} .
Here, 𝜌𝑅 : R → R is a smooth function such that

𝜌𝑅(𝑠) =
{︃

1, |𝑠| > 𝑅+ 1
0, |𝑠| 6 𝑅.

The boundary of the manifold M̌(𝑥, 𝑦;𝐻) can be identified with

𝜕M̌ = M𝑅0(𝑥, 𝑦;𝐻) ∪ ̃︀M(𝑥, 𝑦;𝐻)(3.1)

∪
⋃︁
𝑧

M(𝑥, 𝑧;𝐻) × M̌(𝑧, 𝑦;𝐻)

∪
⋃︁
𝑧

M̌(𝑥, 𝑧;𝐻) × M(𝑧, 𝑦;𝐻).

Now we explain equality (3.1). It is clear how the last two terms on the right-
hand side appear at the boundary. The elements from M𝑅0(𝑥, 𝑦;𝐻) appear at the
boundary when 𝑅𝑛 → 𝑅0. The most complicated part is to prove that ̃︀M is a part
of the boundary. We show that in two steps. In Step A we explain why it holds
𝜕M̌ ⊂ ̃︀M. And in Step B we show the opposite inclusion, ̃︀M ⊂ 𝜕M̌.

Step A. When 𝑅𝑛 → +∞, we can identify the limit of 𝑢𝑛 ∈ M𝑅𝑛
(𝑥, 𝑦;𝐻) with

the element from ̃︀M(𝑥, 𝑦;𝐻) using the reparameterisation
𝑢−

𝑛 (𝑠, 𝑡) = 𝑢𝑛(𝑠−𝑅𝑛 +𝑅0, 𝑡), 𝑢+
𝑛 (𝑠, 𝑡) = 𝑢𝑛(𝑠+𝑅𝑛 −𝑅0, 𝑡).

The strip 𝑢−
𝑛 satisfies the equation

𝜕𝑢−
𝑛

𝜕𝑠
+ 𝐽

(︂
𝜕𝑢−

𝑛

𝜕𝑡
−𝑋𝜌𝑅𝑛−𝐻(𝑢−

𝑛 )
)︂

= 0,

and the boundary conditions
𝑢−

𝑛 (𝑠, 0) = 𝑢𝑛(𝑠−𝑅𝑛 +𝑅0, 0) ∈ 𝑜𝑀 ,

𝑢−
𝑛 (𝑠, 1) = 𝑢𝑛(𝑠−𝑅𝑛 +𝑅0, 1) ∈ 𝜈*𝑁,

for 𝑠 ∈ R. The function 𝜌𝑅𝑛− is

𝜌𝑅𝑛−(𝑠) =
{︃

0, −𝑅0 6 𝑠 6 2𝑅𝑛 −𝑅0

1, 𝑠 ∈ (−∞,−𝑅0 − 1] ∪ [2𝑅𝑛 −𝑅0 + 1,+∞).

The positive strip 𝑢+
𝑛 also satisfies the perturbed Cauchy–Riemann equation

𝜕𝑢+
𝑛

𝜕𝑠
+ 𝐽

(︂
𝜕𝑢+

𝑛

𝜕𝑡
−𝑋𝜌𝑅𝑛+𝐻(𝑢+

𝑛 )
)︂

= 0,

the line 𝑢+
𝑛 (R × {0}) is on the zero section and 𝑢+

𝑛 (R × {1}) is on the conormal
bundle. The function 𝜌𝑅𝑛+ is defined by

𝜌𝑅𝑛+(𝑠) =
{︃

0, −2𝑅𝑛 +𝑅0 6 𝑠 6 𝑅0

1, 𝑠 ∈ (−∞,−2𝑅𝑛 +𝑅0 − 1] ∪ [𝑅0 + 1,+∞).
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The strip 𝑢±
𝑛 converges locally uniformly with all derivatives to some 𝑢± that

satisfies the equation

𝜕𝑢±

𝜕𝑠
+ 𝐽

(︁𝜕𝑢±

𝜕𝑡
−𝑋𝜌±

𝑅0
𝐻(𝑢±)

)︁
= 0.

It is obvious that 𝑢−(−∞, 𝑡) = 𝑥(𝑡) and 𝑢+(+∞, 𝑡) = 𝑦(𝑡). At the +∞-end, the
strip 𝑢− converges to a point 𝑝 ∈ 𝑁 ⊂ 𝑜𝑀 since 𝑢− is holomorphic for 𝑠 > −𝑅0 and
it has a finite energy. The positive strip 𝑢+ is holomorphic at −∞ and it converges
to a point 𝑞 ∈ 𝑁 . Since 𝑢−

𝑛 (𝑅𝑛 −𝑅0, 𝑡) = 𝑢+
𝑛 (−𝑅𝑛 +𝑅0, 𝑡), we conclude that 𝑝 = 𝑞.

Thus, the pair (𝑢−, 𝑢+) belongs to ̃︀M(𝑥, 𝑦;𝐻).
Step B. For a given (𝑢−, 𝑢+) ∈ ̃︀M, we can find a sequence of elements (𝑅,𝜔𝑅) ∈

M̌ that Gromov-converges to (𝑢−, 𝑢+) as 𝑅 → +∞ (see [4, Theorem 4.1.2], [9,
Chapter 4.7] and [31, Theorem 7.1]).

The main technique is gluing, and goes as follows. The strips 𝑢− and 𝑢+ are
holomorphic around the point 𝑢−(+∞) = 𝑢+(−∞), and we can preglue them to ob-
tain a map 𝑢𝑅. This is an approximate solution of the Cauchy–Riemann equation,
𝑢𝑅 satisfies it everywhere except a small neighbourhood of 𝑢𝑅(0) = 𝑢−(+∞) =
𝑢+(−∞). Next, we construct a right inverse to the linearization 𝐷𝑢𝑅

of the oper-
ator 𝜕. Using the implicit-function theorem, we find a genuine solution 𝜔𝑅 to this
equation, that is in a neighborhood of an approximate solution.

Biran and Cornea in [4] glued two holomorphic discs with the boundary on one
Lagrangian submanifold. Frauenfelder in [9] and Schmäschke in [31] worked with
two cleanly intersecting (compact) submanifolds in a compact symplectic manifold.
The cotangent bundle is not a compact manifold, but, with appropriate choice on
an almost complex structure (see the definition of 𝑗𝑐 below), the image of every
holomorphic strip lies in a compact subset of 𝑇 *𝑀 [23, Theorem 3.2]. So we can
assume that everything happens in a compact subset of our symplectic manifold.
We also need a special Riemannian metrics on 𝑇 *𝑀 such that 𝑜𝑀 and 𝜈*𝑁 are
totally geodesic submanifolds with respect to these metrics.

Following [24, 10, 33], we explain choices on almost complex structures and
Riemannian metrics on 𝑇 *𝑀 . Fix a Riemannian metric 𝑔 on 𝑀 . The associated
Levi-Civita connection induces the canonical almost complex structure on 𝑇 *𝑀 ,
which we denote by 𝐽𝑔. We define the subset 𝑗𝑐 of the set of almost complex
structure on 𝑇 *𝑀 by

𝑗𝑐 = {𝐽 | 𝐽 is compatible to 𝜔, 𝐽 = 𝐽𝑔 outside a compact subset in 𝑇 *𝑀}.

Let 𝐽𝑡 be a smooth path in 𝑗𝑐. Then there exists a smooth family of metrics 𝑔𝑡

such that
(1) 𝑜𝑀 is totally geodesic with respect to 𝑔0 and 𝐽0(𝑞)𝑇𝑞𝑜𝑀 is the orthogonal

complement of 𝑇𝑞𝑜𝑀 for every 𝑞 ∈ 𝑜𝑀 ,
(2) 𝜈*𝑁 is totally geodesic with respect to 𝑔1 and 𝐽1(𝑞)𝑇𝑞(𝜈*𝑁) is the or-

thogonal complement of 𝑇𝑞(𝜈*𝑁) near the intersection point of two holo-
morphic strips that we glue,

(3) 𝑔𝑡(𝐽𝑡(𝑞)𝑢, 𝐽𝑡(𝑞)𝑣) = 𝑔𝑡(𝑢, 𝑣) for 𝑞 ∈ 𝑇 *𝑀 and 𝑢, 𝑣 ∈ 𝑇𝑞(𝑇 *𝑀).
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We can define a metric 𝑔0 such that
(1) 𝑜𝑀 is totally geodesic with respect to 𝑔0 and 𝐽0(𝑞)𝑇𝑞𝑜𝑀 is the orthogonal

complement of 𝑇𝑞𝑜𝑀 for every 𝑞 ∈ 𝑜𝑀 ,
(2) 𝑔0(𝐽0(𝑞)𝑢, 𝐽0(𝑞)𝑣) = 𝑔0(𝑢, 𝑣) for 𝑞 ∈ 𝑇 *𝑀 and 𝑢, 𝑣 ∈ 𝑇𝑞(𝑇 *𝑀),

see [10] for details. In the same way we can define a metric 𝑔1 that satisfies the
same properties for the submanifold 𝜈*𝑁 . In [10] the author assumes that the
Lagrangian submanifold is compact. The conormal bundle 𝜈*𝑁 is not a compact
manifold, in general. But it is enough to find a metric such that 𝜈*𝑁 is a totally
geodesic submanifold near 𝑁 ⊂ 𝑜𝑀 , not the whole 𝜈*𝑁 . The linear combination
𝑔𝑡(𝑢, 𝑣) = 𝑔𝑡(𝑢, 𝑣) + 𝑔𝑡(𝐽𝑡𝑢, 𝐽𝑡𝑣), where 𝑔𝑡(𝑢, 𝑣) = (1 − 𝑡)𝑔0(𝑢, 𝑣) + 𝑡𝑔1(𝑢, 𝑣), gives
an appropriate family of metrics (see also [33]). All the other technical details of
gluing are the same as in [31].

Now, we return to the homomorphism ̃︀𝑖. Using the one-dimensional component
of M̌(𝑥, 𝑦;𝐻) and the description of its boundary (3.1), we conclude that ̃︀𝑖 (i.e.,
𝜓 ∘ 𝜑) is chain homotopic to the map

𝑘 : 𝑥 ↦→
∑︁

𝜇𝑁 (𝑦)=𝜇𝑁 (𝑥)

𝑛(𝑥, 𝑦;𝐻) 𝑦.

If there is a nonconstant holomorphic strip that connects Hamiltonian orbits 𝑥 and
𝑦, then 𝜇𝑁 (𝑥) > 𝜇𝑁 (𝑦). It follows that

𝑛(𝑥, 𝑦;𝐻) =
{︃

1, 𝑥 = 𝑦

0, 𝑥 ̸= 𝑦,

i.e., the map 𝑘 induces the identity in homology HF*(𝐻). �

4. Commutative diagram

Proof of Theorem 1.2. This theorem states that 𝑆𝛼𝛽 ∘ Ψ𝛼 = Ψ𝛽 ∘ 𝑇𝛼𝛽 .
The composition on the left-hand side is generated bay the map 𝜎𝛼𝛽 ∘𝜓𝛼, and the
right-hand side is generated by 𝜓𝛽 ∘ 𝜏𝛼𝛽 on the chain level. The idea is to prove
that these maps on the chain level are homotopic to each other.

We separate proof in two steps. In Step 1 and Step 2 we define new maps 𝜒
and 𝜉 that are homotopic to 𝜎𝛼𝛽 ∘𝜓𝛼 and 𝜓𝛽 ∘ 𝜏𝛼𝛽 , respectively. In the conclusion
of the proof we show that 𝜒 and 𝜉 are chain homotopic maps.

Step 1. From definitions it follows

(𝜎𝛼𝛽 ∘ 𝜓𝛼)(𝑝𝛼) =
∑︁

𝑥𝛼,𝑥𝛽

𝑛(𝑝𝛼, 𝑓𝛼, 𝑔𝛼;𝑥𝛼, 𝐻𝛼, 𝐽𝛼)𝑛(𝑥𝛼, 𝑥𝛽 ;𝐻𝛼𝛽)𝑥𝛽 .

This means that 𝜎𝛼𝛽 ∘ 𝜓𝛼 counts the number of points of the set⋃︁
𝑥𝛼

M(𝑝𝛼, 𝑓𝛼, 𝑔𝛼;𝑥𝛼, 𝐻𝛼, 𝐽𝛼) × M(𝑥𝛼, 𝑥𝛽 ;𝐻𝛼𝛽),

where M(𝑥𝛼, 𝑥𝛽 ;𝐻𝛼𝛽) denotes the set of solutions of (1.2). Summation is taken
over 𝑥𝛼, 𝑥𝛽 such that 𝑚𝑓𝛼(𝑝𝛼) = 𝜇𝑁 (𝑥𝛼) + 1

2 dim𝑁 = 𝜇𝑁 (𝑥𝛽) + 1
2 dim𝑁. Let us
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define a family of homotopies between Hamiltonians 𝐻𝛼 and 𝐻𝛽 by

𝐻𝛼𝛽
𝑇,𝑠 =

{︃
𝐻𝛼, 𝑠 6 𝑇

𝐻𝛽 , 𝑠 > 𝑇 + 1,

and a family of homotopies between almost complex structures 𝐽𝛼 and 𝐽𝛽 by

𝐽𝛼𝛽
𝑇,𝑠 =

{︃
𝐽𝛼, 𝑠 6 𝑇

𝐽𝛽 , 𝑠 > 𝑇 + 1.

We consider the moduli space M̆(𝑝𝛼, 𝑓𝛼;𝑥𝛽 , 𝐻𝛼𝛽
𝑇,𝑠) defined as the set of the triples

(𝑇, 𝛾, 𝑢) such that

𝑇 > 𝑇0, 𝛾 : (−∞, 0] → 𝑁, 𝑢 : R × [0, 1] → 𝑇 *𝑀,

𝑑𝛾

𝑑𝑠
= −∇𝑔𝛼𝑓𝛼(𝛾), 𝜕𝑢

𝜕𝑠
+ 𝐽𝛼𝛽

𝑇,𝑠

(︁𝜕𝑢
𝜕𝑡

−𝑋𝜌+
𝑅

𝐻𝛼𝛽
𝑇,𝑠

(𝑢)
)︁

= 0,

𝐸(𝑢) < +∞, 𝛾(−∞) = 𝑝𝛼, 𝑢(𝑠, 0) ∈ 𝑜𝑀 , 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 ∈ R,

𝑢(+∞, 𝑡) = 𝑥𝛽(𝑡), 𝛾(0) = 𝑢(−∞).

Using the same idea as in the proof of Theorem 1.1, from gluing and compactness
arguments, it follows that boundary of M̆ can be described as

𝜕M̆(𝑝𝛼, 𝑓𝛼;𝑥𝛽 , 𝐻𝛼𝛽
𝑇,𝑠) = M(𝑝𝛼, 𝑓𝛼;𝑥𝛽 , 𝐻𝛼𝛽

𝑇0,𝑠)

∪
⋃︁
𝑥𝛼

M(𝑝𝛼, 𝑓𝛼, 𝑔𝛼;𝑥𝛼, 𝐻𝛼, 𝐽𝛼) × M(𝑥𝛼, 𝑥𝛽 ;𝐻𝛼𝛽)

∪
⋃︁
𝑞𝛼

M(𝑝𝛼, 𝑞𝛼; 𝑓𝛼) × M̆(𝑞𝛼, 𝑓𝛼;𝑥𝛽 , 𝐻𝛼𝛽
𝑇,𝑠)

∪
⋃︁
𝑦𝛽

M̆(𝑝𝛼, 𝑓𝛼; 𝑦𝛽 , 𝐻𝛼𝛽
𝑇,𝑠) × M(𝑦𝛽 , 𝑥𝛽 ;𝐻𝛽).

The first element in a previous union is already described in (2.4) (for fixed
homotopy 𝐻𝛼𝛽

𝑠 = 𝐻𝛼𝛽
𝑇0,𝑠). We define a map 𝜒 that counts the number of elements in

M(𝑝𝛼, 𝑓𝛼;𝑥𝛽 , 𝐻𝛼𝛽
𝑠 ) by 𝜒(𝑝𝛼) =

∑︀
𝑥𝛽 𝑛(𝑝𝛼, 𝑓𝛼;𝑥𝛽 , 𝐻𝛼𝛽

𝑠 )𝑥𝛽 . From the description of
topological boundary of M̆, we conclude that 𝜒 and 𝜎𝛼𝛽 ∘ 𝜓𝛼 are chain homotopic
maps.

Step 2. The other composition satisfies the equation

𝜓𝛽 ∘ 𝜏𝛼𝛽(𝑝𝛼) =
∑︁

𝑝𝛽 ,𝑥𝛽

𝑛(𝑝𝛼, 𝑝𝛽 ; 𝑓𝛼𝛽)𝑛(𝑝𝛽 , 𝑓𝛽 , 𝑔𝛽 ;𝑥𝛽 , 𝐻𝛽 , 𝐽𝛽)𝑥𝛽 .

Now, 𝜓𝛽 ∘ 𝜏𝛼𝛽 counts the number of points of the set⋃︁
𝑝𝛽

M(𝑝𝛼, 𝑝𝛽 ; 𝑓𝛼𝛽) × M(𝑝𝛽 , 𝑓𝛽 , 𝑔𝛽 ;𝑥𝛽 , 𝐻𝛽 , 𝐽𝛽),

where M(𝑝𝛼, 𝑝𝛽 ; 𝑓𝛼𝛽) is the set of solutions of (1.4). Here, we take a sum over
𝑝𝛽 , 𝑥𝛽 such that 𝑚𝑓𝛼(𝑝𝛼) = 𝑚𝑓𝛽 (𝑝𝛽) = 𝜇𝑁 (𝑥𝛽) + 1

2 dim𝑁. We define a map 𝜉
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Figure 9. Riemannian surface Σ

that counts the number of points in M(𝑝𝛼, 𝑓𝛼𝛽
𝑠 ;𝑥𝛽 , 𝐻𝛽). It follows, similarly as in

Step 1, that 𝜉 and 𝜓𝛽 ∘ 𝜏𝛼𝛽 are chain homotopic maps.
Using the moduli space ̂︀M(𝑝𝛼, 𝑓𝛼𝛽

𝑠,𝛿 ;𝑥𝛽 , 𝐻𝛼𝛽
𝑠,𝛿 ) defined in (2.3), we prove that 𝜒

and 𝜉 are chain homotopic maps. Let us define a chain homomorphism

𝑗 : CM𝑘−1(𝑓𝛼) → CF𝑘(𝐻𝛽), 𝑗(𝑝𝛼) =
∑︁

𝜇𝑁 (𝑥𝛽)+dim 𝑁/2=𝑘

̂︀𝑛(𝑝𝛼, 𝑓𝛼𝛽
𝑠,𝛿 ;𝑥𝛽 , 𝐻𝛼𝛽

𝑠,𝛿 )𝑥𝛽 ,

where ̂︀𝑛(𝑝𝛼, 𝑓𝛼𝛽
𝑠,𝛿 ;𝑥𝛽 , 𝐻𝛼𝛽

𝑠,𝛿 ) is the number of elements of the zero-dimensional man-
ifold ̂︀M(𝑝𝛼, 𝑓𝛼𝛽

𝑠,𝛿 ;𝑥𝛽 , 𝐻𝛼𝛽
𝑠,𝛿 ). From Proposition 2.7, it follows that

𝜉 − 𝜒+ 𝑗 ∘ 𝜕𝑀 + 𝜕𝐹 ∘ 𝑗 = 0. �

5. Product in homology

In this section we prove Theorem 1.3. First we explain a construction of the
product

⋆ : HF*(𝑜𝑀 , 𝑜𝑀 : 𝐻1) ⊗ HF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻2) → HF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻3).
Then we prove subadditivity of spectral invariants with respect to this product.

Proof of Theorem 1.3. We define a Riemannian surface with boundary Σ
as the disjoint union R× [−1, 0] ⊔R× [0, 1] with identification (𝑠, 0−) ∼ (𝑠, 0+) for
𝑠 > 0 (see Figure 9). The surface Σ is conformally equivalent to a closed disc with
three boundary punctures. Complex structure on Σ r {(0, 0)} is induced by the
inclusion (𝑠, 𝑡) ↦→ 𝑠 + 𝑖𝑡, in C. Complex structure at (0, 0) is given by the square
root.

Denote by Σ−
1 , Σ−

2 , Σ+ the two “incoming" and one “outgoing" ends, such that
Σ−

1 ,Σ
−
2 ≈ [0, 1] × (−∞, 0], Σ+ ≈ [0, 1] × [0,+∞).

By 𝑢−
𝑗 := 𝑢|Σ−

𝑗
, 𝑗 = 1, 2, and 𝑢+ := 𝑢|Σ+ , we denote the restriction of the map

defined on the surface Σ. Let 𝜌± : R → [0, 1] denote the smooth cut-off functions
such that

𝜌−(𝑠) =
{︃

1, 𝑠 6 −2
0, 𝑠 > −1

𝜌+(𝑠) = 𝜌−(−𝑠).

For 𝑥−
1 ∈ CF*(𝑜𝑀 , 𝑜𝑀 :𝐻1), 𝑥−

2 ∈ CF*(𝑜𝑀 , 𝜈*𝑁 :𝐻2) and 𝑥+ ∈ CF*(𝑜𝑀 , 𝜈*𝑁 :𝐻3),
we define the moduli space M(𝑥−

1 , 𝑥
−
2 ;𝑥+) as a set of maps 𝑢 : Σ → 𝑇 *𝑀 such that

𝜕𝑠𝑢
−
𝑗 + 𝐽(𝜕𝑡𝑢

−
𝑗 −𝑋𝜌−𝐻𝑗

(𝑢−
𝑗 )) = 0, 𝑗 = 1, 2,
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Figure 10. Set of trees Mtree(𝑝−
1 , 𝑝

−
2 ; 𝑝+)

𝜕𝑠𝑢
+ + 𝐽(𝜕𝑡𝑢

+ −𝑋𝜌+𝐻3(𝑢+)) = 0,
𝜕𝑠𝑢+ 𝐽𝜕𝑡𝑢 = 0 on Σ0 = Σ r (Σ1 ∪ Σ2 ∪ Σ3),
𝑢(𝑠,−1) ∈ 𝑜𝑀 , 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 ∈ R,
𝑢(𝑠, 0−), 𝑢(𝑠, 0+) ∈ 𝑜𝑀 , 𝑠 6 0,
𝑢−

𝑗 (−∞, 𝑡) = 𝑥−
𝑗 (𝑡), 𝑗 = 1, 2, 𝑢+(+∞, 𝑡) = 𝑥+(𝑡).

We use the notation 𝜕𝐽,𝐻(𝑢) = 0 for the perturbed Cauchy–Riemann equation
that we consider in M(𝑥−

1 , 𝑥
−
2 ;𝑥+). Elements of a moduli space M(𝑥−

1 , 𝑥
−
2 ;𝑥+) are

perturbed holomorphic discs 𝑢. The boundary of 𝑢 is on the Lagrangian submani-
fold 𝑜𝑀 ∪ 𝜈*𝑁 with the clean self-intersection along 𝑁 .

For generic choices of Hamiltonians and an almost complex structure, the man-
ifold M(𝑥−

1 , 𝑥
−
2 ;𝑥+) is smooth and of dimension

𝜇𝑀 (𝑥−
1 ) + 𝜇𝑁 (𝑥−

2 ) − 𝜇𝑁 (𝑥+) − 1
2 dim𝑀.

By 𝑥−
1 ⋆ 𝑥−

2 =
∑︀

𝑥+ ♯2M(𝑥−
1 , 𝑥

−
2 ;𝑥+)𝑥+, we define a product on generators of

Floer complexes. Here ♯2M(𝑥−
1 , 𝑥

−
2 ;𝑥+) denotes the number (modulo 2) of elements

of the zero-dimensional component of M(𝑥−
1 , 𝑥

−
2 ;𝑥+). (Similar type of product

is defined in [6], where it was used in the comparison of spectral invariants in
Lagrangian and Hamiltonian Floer theory.) We extend the product ⋆ by bilinearity
on CF*(𝑜𝑀 , 𝑜𝑀 : 𝐻1) ⊗ CF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻2). The operation ⋆ commutes with the
corresponding boundary operators and induces product in homology

⋆ : HF𝑘(𝑜𝑀 , 𝑜𝑀 : 𝐻1) ⊗ HF𝑙(𝑜𝑀 , 𝜈*𝑁 : 𝐻2) → HF𝑘+𝑙−dim 𝑀 (𝑜𝑀 , 𝜈*𝑁 : 𝐻3).

The next step is to define an exterior intersection product on the Morse homology.
Let us take Morse functions 𝑓1 : 𝑀 → R and 𝑓2, 𝑓3 : 𝑁 → R. For 𝑝−

1 ∈ Crit(𝑓1),
𝑝−

2 ∈ Crit(𝑓2) and 𝑝+ ∈ Crit(𝑓3) we define the set of trees Mtree(𝑝−
1 , 𝑝

−
2 ; 𝑝+) (see

Figure 10). The moduli space Mtree(𝑝−
1 , 𝑝

−
2 ; 𝑝+) contains the triples (𝛾−

1 , 𝛾
−
2 , 𝛾

+)
such that

𝛾−
1 : (−∞, 0] → 𝑀, 𝛾−

2 : (−∞, 0] → 𝑁, 𝛾+ : [0,+∞) → 𝑁,

𝑑𝛾−
1
𝑑𝑠

= −∇𝑔1𝑓1(𝛾−
1 ), 𝑑𝛾−

2
𝑑𝑠

= −∇𝑔2𝑓2(𝛾−
2 ), 𝑑𝛾+

𝑑𝑠
= −∇𝑔3𝑓3(𝛾+),

𝛾−
1 (−∞) = 𝑝−

1 , 𝛾−
2 (−∞) = 𝑝−

2 , 𝛾+(+∞) = 𝑝+, 𝛾−
1 (0) = 𝛾−

2 (0) = 𝛾+(0).

For generic choices of Morse–Smale pairs (𝑓𝑗 , 𝑔𝑗), 𝑗∈{1, 2, 3}, Mtree(𝑝−
1 , 𝑝

−
2 ; 𝑝+)

is a smooth manifold of dimension 𝑚𝑓1(𝑝−
1 )+𝑚𝑓2(𝑝−

2 )−𝑚𝑓3(𝑝+)−dim𝑀. On chain



42 ÐURETIĆ

complexes we define

· : CF𝑘(𝑀 : 𝑓1) ⊗ CF𝑙(𝑁 : 𝑓2) → CF𝑘+𝑙−dim 𝑀 (𝑁 : 𝑓3),

by
𝑝−

1 · 𝑝−
2 =

∑︁
𝑝+

♯2M
tree(𝑝−

1 , 𝑝
−
2 ; 𝑝+) 𝑝+.

It is a chain map that defines the exterior intersection product

· : HF𝑘(𝑀 : 𝑓1) ⊗ HF𝑙(𝑁 : 𝑓2) → HF𝑘+𝑙−dim 𝑀 (𝑁 : 𝑓3).

Once we have defined the exterior intersection product, we can prove that PSS
preserves the algebraic structure, i.e., it maps · to ⋆. The idea is to show that ·
and 𝜑(𝜓 ⋆ 𝜓) are chain homotopic maps. As in the previous situation, 𝑝−

1 , 𝑝
−
2 , 𝑝

+

are critical points. We know that

𝜑(𝜓(𝑝−
1 ) ⋆ 𝜓(𝑝−

2 )) =
∑︁

𝑥−
1 ,𝑥−

2 ,𝑥+,𝑝+

♯2M(𝑝−
1 , 𝑓1;𝑥−

1 , 𝐻1) ♯2M(𝑝−
2 , 𝑓2;𝑥−

2 , 𝐻2)

♯2M(𝑥−
1 , 𝑥

−
2 ;𝑥+) ♯2M(𝑥+, 𝐻3; 𝑝+, 𝑓3) 𝑝+.

Following [16], we define two auxiliary manifolds. The first of them, the man-
ifold M

prod
𝑅 (𝑝−

1 , 𝑝
−
2 , 𝑝

+; 𝑓, 𝐻⃗), is the set of all (𝛾−
1 , 𝛾

−
2 , 𝛾

+, 𝑢) that satisfy

𝛾−
1 : (−∞, 0] → 𝑀, 𝛾−

1 (−∞) = 𝑝−
1 , 𝛾−

2 : (−∞, 0] → 𝑁, 𝛾−
2 (−∞) = 𝑝−

2 ,

𝛾+ : [0,+∞) → 𝑁, 𝛾+(+∞) = 𝑝+, 𝑢 : Σ → 𝑇 *𝑀,

𝑑𝛾−
1
𝑑𝑠

= −∇𝑔1𝑓1(𝛾−
1 ), 𝑑𝛾−

2
𝑑𝑠

= −∇𝑔2𝑓2(𝛾−
2 ), 𝑑𝛾+

𝑑𝑠
= −∇𝑔3𝑓3(𝛾+),

𝜕𝑠𝑢
−
𝑗 + 𝐽(𝜕𝑡𝑢

−
𝑗 −𝑋𝜅−

𝑅
𝐻𝑗

(𝑢−
𝑗 )) = 0, 𝑗 = 1, 2, 𝜕𝑠𝑢

+ + 𝐽(𝜕𝑡𝑢
+ −𝑋𝜅+

𝑅
𝐻3

(𝑢+)) = 0,

𝜕𝑠𝑢+ 𝐽𝜕𝑡𝑢 = 0 on Σ0, 𝐸(𝑢) < +∞,

𝑢(𝑠,−1) ∈ 𝑜𝑀 , 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 ∈ R, 𝑢(𝑠, 0−), 𝑢(𝑠, 0+) ∈ 𝑜𝑀 , 𝑠 6 0,
𝑢−

𝑗 (−∞) = 𝛾−
𝑗 (0), 𝑗 = 1, 2, 𝑢+(+∞) = 𝛾+(0),

where 𝑅 > 2. A function 𝜅−
𝑅 : (−∞, 0] → [0, 1] is defined by

𝜅−
𝑅(𝑠) =

{︃
1, −𝑅 6 𝑠 6 −2
0, 𝑠 6 −𝑅− 1, 𝑠 > −1,

and 𝜅+
𝑅 : [0,+∞) → [0, 1], 𝜅+

𝑅(𝑠) = 𝜅−
𝑅(−𝑠). We include (𝑓, 𝐻⃗) in the notation

for manifold M
prod
𝑅 in order to emphasize that we have different functions, 𝑓𝑗 , and

Hamiltonians, 𝐻𝑗 , at appropriate ends. Another moduli space is

Mprod(𝑝−
1 , 𝑝

−
2 , 𝑝

+; 𝑓, 𝐻⃗) =

{(𝑅, 𝛾−
1 , 𝛾

−
2 , 𝛾

+, 𝑢) | 𝑅 > 𝑅0, (𝛾−
1 , 𝛾

−
2 , 𝛾

+, 𝑢) ∈ M
prod
𝑅 (𝑝−

1 , 𝑝
−
2 , 𝑝

+; 𝑓, 𝐻⃗)}.

The boundary of one-dimensional component of Mprod is of the form

𝜕Mprod(𝑝−
1 , 𝑝

−
2 , 𝑝

+; 𝑓, 𝐻⃗) = M
prod
𝑅0

(𝑝−
1 , 𝑝

−
2 , 𝑝

+; 𝑓, 𝐻⃗)
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∪
⋃︁

𝑞−
1 ∈CF*(𝑓1)

M(𝑝−
1 , 𝑞

−
1 ; 𝑓1) × Mprod(𝑞−

1 , 𝑝
−
2 , 𝑝

+; 𝑓, 𝐻⃗)

∪
⋃︁

𝑞−
2 ∈CF*(𝑓2)

M(𝑝−
2 , 𝑞

−
2 ; 𝑓2) × Mprod(𝑝−

1 , 𝑞
−
2 , 𝑝

+; 𝑓, 𝐻⃗)

∪
⋃︁

𝑞+∈CF*(𝑓3)

Mprod(𝑝−
1 , 𝑝

−
2 , 𝑞

+; 𝑓, 𝐻⃗) × M(𝑞+, 𝑝+; 𝑓3)

∪
⋃︁

𝑥−
1 ,𝑥−

2 ,𝑥+

M(𝑝−
1 , 𝑓1;𝑥−

1 , 𝐻1) × M(𝑝−
2 , 𝑓2;𝑥−

2 , 𝐻2)

× M(𝑥−
1 , 𝑥

−
2 ;𝑥+) × M(𝑥+, 𝐻3; 𝑝+, 𝑓3).

We conclude that, at the homology level, 𝜑(𝜓(𝑝−
1 ) ⋆ 𝜓(𝑝−

2 )) equals homomor-
phism that counts the number of elements of Mprod

𝑅0
(𝑝−

1 , 𝑝
−
2 , 𝑝

+; 𝑓, 𝐻⃗). The latter
is independent of the choice of Hamiltonians. We used the same idea to show that
the homomorphism 𝐿, in the proof of Theorem 1.1, is independent of Hamilton-
ian. Therefore, we can take Hamiltonians to be zero. Homolomorphic pants with
boundary on 𝑜𝑀 ∪ 𝜈*𝑁 are constant, thus

M
prod
𝑅0

(𝑝−
1 , 𝑝

−
2 , 𝑝

+; 𝑓, 𝐻⃗ = 0) = Mtree(𝑝−
1 , 𝑝

−
2 ; 𝑝+).

It follows that 𝛼 · 𝛽 = Φ(Ψ(𝛼) ⋆Ψ(𝛽)), for 𝛼 ∈ HM*(𝑀) and 𝛽 ∈ HM*(𝑁).
Now we prove the inequality between spectral invariants stated in Theorem 1.3.

Since a concatenation does not have to be a smooth function, we can find a Hamil-
tonian 𝐻 ′ that is regular, smooth and close enough to the concatenation 𝐻1♯𝐻2,
i.e., ‖𝐻 ′ − 𝐻1♯𝐻2‖𝐶0 < 𝜀. The first step is to prove that the product ⋆ defines a
product

CF𝜆
*(𝐻1) × CF𝜇

* (𝐻2) → CF𝜆+𝜇+𝜀
* (𝐻 ′),

on filtered complexes, for every 𝜀 > 0 that is small enough. Let us take a smooth
family of Hamiltonians 𝐾 : R × [−1, 1] × 𝑇 *𝑀 → R such that

𝐾(𝑠, 𝑡, ·) =

⎧⎪⎨⎪⎩
𝐻1(𝑡+ 1, ·), 𝑠 6 −1,−1 6 𝑡 6 0
𝐻2(𝑡, ·), 𝑠 6 −1, 0 6 𝑡 6 1
1
2𝐻

′( 𝑡+1
2 , ·), 𝑠 > 1.

We can choose 𝐾 such that
⃦⃦

𝜕𝐾
𝜕𝑠

⃦⃦
6 𝜀, 𝑠 ∈ [−1, 1], and 𝜕𝐾

𝜕𝑠 = 0, elsewhere.
Let us take 𝑥−

1 ∈ CF𝜆
*(𝐻1) and 𝑥−

2 ∈ CF𝜇
* (𝐻2). Assume that there exists an

element 𝑢 ∈ M(𝑥−
1 , 𝑥

−
2 ;𝑥+) for some 𝑥+ ∈ CF*(𝐻 ′) (𝑢 is a solution of the equation

𝜕𝐾,𝐽(𝑢) = 0). Then it holds

0 6
∫︁

Σ

⃦⃦⃦⃦
𝜕𝑢

𝜕𝑠

⃦⃦⃦⃦2

𝐽

𝑑𝑠 𝑑𝑡 =
∫︁

Σ
𝜔

(︂
𝜕𝑢

𝜕𝑠
, 𝐽
𝜕𝑢

𝜕𝑠

)︂
𝑑𝑠 𝑑𝑡(5.1)

=
∫︁

Σ
𝜔

(︂
𝜕𝑢

𝜕𝑠
,
𝜕𝑢

𝜕𝑡
−𝑋𝐾(𝑢)

)︂
𝑑𝑠 𝑑𝑡

=
∫︁

Σ
𝑢*𝜔 −

∫︁
Σ
𝑑𝐾

(︂
𝜕𝑢

𝜕𝑠

)︂
𝑑𝑠 𝑑𝑡.
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Using Stoke’s formula we obtain
∫︀

Σ 𝑢
*𝜔 = −

∫︀
𝑥−*

1 𝜆−
∫︀
𝑥−*

2 𝜆+
∫︀
𝑥+*𝜆. Using the

equality ∫︁
Σ

𝜕

𝜕𝑠

(︀
𝐾 ∘ 𝑢

)︀
𝑑𝑠 𝑑𝑡 =

∫︁
Σ
𝑑𝐾

(︂
𝜕𝑢

𝜕𝑠

)︂
𝑑𝑠 𝑑𝑡+

∫︁
Σ

𝜕𝐾

𝜕𝑠
(𝑢) 𝑑𝑠 𝑑𝑡,

and Stoke’s formula again, we get the estimate

−
∫︁

Σ
𝑑𝐾

(︂
𝜕𝑢

𝜕𝑠

)︂
𝑑𝑠 𝑑𝑡 6

∫︁ 1

0
𝐻1(𝑥−

1 (𝑡), 𝑡) 𝑑𝑡

+
∫︁ 1

0
𝐻2(𝑥−

2 (𝑡), 𝑡) 𝑑𝑡−
∫︁ 1

0
𝐻 ′(𝑥+(𝑡), 𝑡) 𝑑𝑡+ 4𝜀.

Thus A𝐻′(𝑥+) 6 A𝐻1(𝑥−
1 ) + A𝐻2(𝑥−

2 ) + 4𝜀. From the definition of the operation ·,
it easily follows

𝑙(𝛼 · 𝛽; 𝑜𝑀 , 𝜈*𝑁 : 𝐻 ′) 6 𝑙(𝛼; 𝑜𝑀 , 𝑜𝑀 : 𝐻1) + 𝑙(𝛽; 𝑜𝑀 , 𝜈*𝑁 : 𝐻2) + 4𝜀.

We know [23] that spectral invariants are continuous with respect to Hamiltonians.
If we pass to the limit as 𝜀 → 0, then we get the triangle inequality

𝑙(𝛼 · 𝛽; 𝑜𝑀 , 𝜈*𝑁 : 𝐻1♯𝐻2) 6 𝑙(𝛼; 𝑜𝑀 , 𝑜𝑀 : 𝐻1) + 𝑙(𝛽; 𝑜𝑀 , 𝜈*𝑁 : 𝐻2). �

Proof of Theorem 1.4. For 𝑥∈CF*(𝑜𝑀 , 𝜈*𝑁 :𝐻) and 𝑦∈CF*(𝑜𝑀 , 𝑜𝑀 :𝐻),
we define an auxiliary moduli space M𝑗(𝑥, 𝑦;𝐻) to be the set of all the maps
𝑢 : R × [0, 1] → 𝑇 *𝑀 such that

𝜕𝑠𝑢+ 𝐽(𝜕𝑡𝑢−𝑋𝐻(𝑢)) = 0, 𝑢(𝑠, 0) ∈ 𝑜𝑀 , 𝑠 ∈ R, 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 6 0,
𝑢(𝑠, 1) ∈ 𝑜𝑀 , 𝑠 > 0, 𝑢(−∞, 𝑡) = 𝑥(𝑡), 𝑢(+∞, 𝑡) = 𝑦(𝑡).

Strips of this type, with a jump on the boundary, were discussed in [1]. On the
generators of CF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻) we define 𝑚 to be 𝑚(𝑥) =

∑︀
𝑦 ♯2M

𝑗(𝑥, 𝑦;𝐻) 𝑦.
The boundary of the one-dimensional component of M𝑗(𝑥, 𝑦;𝐻) is

𝜕M𝑗
[1](𝑥, 𝑦;𝐻) =

⋃︁
𝑥′∈CF*(𝑜𝑀 ,𝜈*𝑁 :𝐻)

M(𝑥, 𝑥′;𝐻) × M𝑗(𝑥′, 𝑥;𝐻)

∪
⋃︁

𝑦′∈CF*(𝑜𝑀 ,𝑜𝑀 :𝐻)

M𝑗(𝑥, 𝑦′;𝐻) × M(𝑦′, 𝑦;𝐻).

Thus, 𝑚 induces a map on homology level (denoted by 𝑚, again)

𝑚 : HF*(𝑜𝑀 , 𝜈*𝑁 : 𝐻) → HF*(𝑜𝑀 , 𝑜𝑀 : 𝐻).

We can explicitly describe the induced morphism on the Morse side

Φ ∘𝑚 ∘ Ψ : HM*(𝑁) → HM*(𝑀).

In order to do this, we need to correlate somehow the Morse functions on 𝑁 and 𝑀 .
Let us take a Morse function 𝑓 : 𝑁 → R. Following [32], we can find a Morse
function 𝐹 : 𝑀 → R extending 𝑓 , 𝐹 |𝑁 = 𝑓, in such a way that there are no
trajectories for the negative gradient flow of 𝐹 leaving 𝑁 (see [32, Proposition 4.16
and Corollary 4.17]).
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On chain complexes, 𝜑 ∘𝑚 ∘ 𝜓 is

𝜑(𝑚(𝜓(𝑝))) =
∑︁
𝑥,𝑦,𝑞

♯2M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽)♯2M𝑗(𝑥, 𝑦;𝐻)♯2M(𝑦,𝐻, 𝐽 ; 𝑞, 𝐹, 𝑔) 𝑞,

where the summation is taken over

𝑥 ∈ CF𝑘(𝑜𝑀 , 𝜈*𝑁 : 𝐻), 𝑦 ∈ CF𝑘(𝑜𝑀 , 𝑜𝑀 : 𝐻), 𝑞 ∈ CM𝑘(𝑀 : 𝐹 ).

Note that 𝑔 is a metric on 𝑀 . We will use the same idea as in the proof of
Theorem 1.1, when we defined M𝑅(𝑝, 𝑞, 𝑓 ;𝐻) and M(𝑝, 𝑞, 𝑓 ;𝐻). So, we define two
auxiliary manifolds. One of them, denoted by Maux

𝑅 (𝑝, 𝑓 ; 𝑞, 𝐹 ;𝐻), is defined as the
set of triples (𝛾−, 𝑢, 𝛾+) such that

𝛾− : (−∞, 0] → 𝑁, 𝑑𝑜𝑡𝛾− = −∇𝑓(𝛾−), 𝛾+ : [0,+∞) → 𝑀, 𝛾̇+ = −∇𝐹 (𝛾+),
𝑢 : R × [0, 1] → 𝑇 *𝑀, 𝜕𝑠𝑢+ 𝐽(𝜕𝑡𝑢−𝑋𝜎𝑅𝐻(𝑢)) = 0,

𝑢(𝑠, 0) ∈ 𝑜𝑀 , 𝑠 ∈ R, 𝑢(𝑠, 1) ∈ 𝜈*𝑁, 𝑠 6 0, 𝑢(𝑠, 1) ∈ 𝑜𝑀 , 𝑠 > 0,
𝛾−(−∞) = 𝑝, 𝛾+(+∞) = 𝑞, 𝑢(−∞) = 𝛾−(0), 𝑢(+∞) = 𝛾+(0).

The dimension of Maux
𝑅 (𝑝, 𝑓 ; 𝑞, 𝐹 ;𝐻) is 𝑚𝑓 (𝑝) −𝑚𝐹 (𝑞). The other manifold is

Maux(𝑝, 𝑓 ; 𝑞, 𝐹 ;𝐻) = {(𝑅, 𝛾−, 𝑢, 𝛾+) | (𝛾−, 𝑢, 𝛾+) ∈ Maux
𝑅 (𝑝, 𝑓 ; 𝑞, 𝐹 ;𝐻), 𝑅 > 𝑅0},

of dimension 𝑚𝑓 (𝑝) − 𝑚𝐹 (𝑞) + 1. For 𝑝 ∈ CM𝑘(𝑁 : 𝑓) and 𝑞 ∈ CM𝑘(𝑀 : 𝐹 ), the
boundary of the one-dimensional manifold Maux(𝑝, 𝑓 ; 𝑞, 𝐹 ;𝐻) is

𝜕Maux(𝑝, 𝑓 ; 𝑞, 𝐹 ;𝐻) = Maux
𝑅0

(𝑝, 𝑓 ; 𝑞, 𝐹 ;𝐻)

∪
⋃︁

𝑟∈CM𝑘−1(𝑁 :𝑓)

M(𝑝, 𝑟; 𝑓) × Maux(𝑟, 𝑓 ; 𝑞, 𝐹 ;𝐻)

∪
⋃︁

𝑠∈CM𝑘+1(𝑀 :𝐹 )

Maux(𝑝, 𝑓 ; 𝑠, 𝐹 ;𝐻) × M(𝑠, 𝑞;𝐹 )

∪
⋃︁

𝑥∈CF𝑘,𝑦∈CF𝑘

M(𝑝, 𝑓, 𝑔;𝑥,𝐻, 𝐽) × M𝑗(𝑥, 𝑦;𝐻) × M(𝑦,𝐻, 𝐽 ; 𝑞, 𝐹, 𝑔).

Thus, 𝜑 ∘ 𝑚 ∘ 𝜓 is chain homotopic to the map 𝜂 : CM𝑘(𝑁 : 𝑓) → CM𝑘(𝑀 : 𝐹 ),
defined by

𝜂(𝑝) =
∑︁

𝑞

♯2M
aux
𝑅0

(𝑝, 𝑓 ; 𝑞, 𝐹 ;𝐻) 𝑞.

This map is an analogue of the map 𝑙 defined in the proof of Theorem 1.1. In the
same way, 𝜂 is going to be chain homotopic to the map 𝜂0 that counts combined
object (𝛾−, 𝑢, 𝛾+) where 𝑢 is a holomorphic disc (perturbed by zero Hamiltonian)
with the boundary on 𝑜𝑀 ∪ 𝜈*𝑁 . We have already showed that all such discs are
constant, thus 𝜂0 counts the number of gradient trajectories of 𝐹 (since 𝐹 = 𝑓 on
𝑁) that connect 𝑝 ∈ 𝑁 with some 𝑞 ∈ CM𝑘(𝑀 : 𝐹 ). We assume that there are
no negative gradient trajectories of 𝐹 leaving 𝑁 . Since 𝑝 and 𝑞 are of the same
Morse index, a gradient trajectory connecting 𝑝 and 𝑞 does not exist when 𝑝 ̸= 𝑞.
We conclude that 𝜂0 = 𝑖 : CM𝑘(𝑁 : 𝑓) → CM𝑘(𝑀 : 𝐹 ), is the inclusion of chain
complexes. Once again, we construct 𝐹 as an extension of 𝑓 . Thus the inclusion
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𝑖 of chain complexes makes sense in this situation. In Morse homology, Φ ∘ 𝑚 ∘ Ψ
and 𝑖 induce the same map.

We are only left to prove inequality (1.6) among spectral invariants. Using the
same idea as in (5.1), one can prove that the action functional A𝐻 decreases along
the holomorphic strip 𝑢 ∈ M𝑗(𝑥, 𝑦;𝐻). It means that𝑚 induces the homomorphism

𝑚 : HF𝜆
*(𝑜𝑀 , 𝜈*𝑁 : 𝐻) → HF𝜆

*(𝑜𝑀 , 𝑜𝑀 : 𝐻).

on filtered homology. So, if Ψ(𝛼) is realized as an element from HF𝜆
*(𝑜𝑀 , 𝜈*𝑁 :

𝐻), then an element 𝑚(Ψ(𝛼)) = Ψ(Φ(𝑚(Ψ(𝛼)))), is realized as an element from
HF𝜆

*(𝑜𝑀 , 𝑜𝑀 : 𝐻). The inequality (1.6) directly follows. �
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