
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 102(116) (2017), 247–262 DOI: https://doi.org/10.2298/PIM1716247Z

HOLOMORPHIC SERIES EXPANSION
OF FUNCTIONS OF CARLEMAN TYPE

ON THE INTERVAL [−1, 1]

Hicham Zoubeir

Abstract. We characterize the functions of some Carleman classes on the
unit interval [−1, 1] as sums of holomorphic functions in specific neighborhoods
of [−1, 1]. As an application of our main theorem, we perform an alternative
construction of the Dyn’kin’s pseudoanalytic extension for these Carleman
classes on [−1, 1].

1. Introduction

In 1926 [8] Carleman raised the problem of the representation of the func-
tions of a quasianalytic class in terms of their successive derivatives at a given
point. He noticed that this problem should be solved by a decomposition method.
This problem was also raised by Julia in 1925 [13, 14, 15], while he was look-
ing for an algorithmic generalization of the classical Borel process which generates
classes of quasi-analytic functions from sequences of complex numbers converging
to 0. In 1962 [2] Badalyan gave, by his theory of quasi-powers (a generalization
to quasianalytic Carleman classes of Taylor series expansion) the complete solution
to Carleman’s problem. In 1970 [3] Badalyan generalized his theory to some non-
quasianalytic classes. In 1991 [10, pp. 249–253] Ecalle obtained for the functions
of a regular Carleman class on a segment [𝑎, 𝑏], a series expansion into holomorphic
functions on specific neighborhoods of [𝑎, 𝑏]. In 2004, Belghiti obtained for certain
Carleman classes on arbitrary bounded convex planar domains [4] a similar but
more explicit holomorphic expansion series. Let us observe that the approach in
[4, 10] relies mainly on the theorem of pseudoanalytic extension due to Dyn’kin [9].

Improving the methods of Ecalle and Belghiti, we obtained in [5] a characteri-
zation of the functions of a Gevrey class on [−1, 1] as sums of series of holomorphic
functions in suitable neighborhoods of [−1, 1], and here we generalize this method
to some Carleman classes on [−1, 1]. As an application of our main theorem, we
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derive an alternative construction of Dyn’kin’s pseudoanalytic extension for these
Carleman classes.

2. Preliminary notes

Let 𝑆 be a nonempty subset of C, 𝑓 : 𝑆 → C a bounded function, and ‖𝑓‖∞,𝑆 :=
sup𝑧∈𝑆 |𝑓(𝑧)|. For 𝑧 ∈ C we set 𝜌(𝑧, 𝑆) := inf𝑢∈𝑆 |𝑧 − 𝑢|. For 𝑟 > 0, 𝐵(𝑧, 𝑟) is the
usual open ball in C with center 𝑧 and radius 𝑟. We set also

𝑆𝑟 := 𝑆 + 𝐵 (0; 𝑟) := {𝑧 + 𝑢 : 𝑧 ∈ 𝑆, 𝑢 ∈ 𝐵(0, 𝑟)}

Thus we have 𝑆𝑟 = {𝑧 ∈ C : 𝜌(𝑧, 𝑆) < 𝑟}. 𝒪(𝑆) denotes the set of holomorphic
functions on some neighborhood of 𝑆.

Let 𝛼 := (𝛼1, 𝛼2), 𝛽 := (𝛽1, 𝛽2) ∈ N2. We write 𝛽 6 𝛼 if: 𝛽1 6 𝛼1 and
𝛽2 6 𝛼2. Given a property P(𝑥), with 𝑥 ∈ R, we say that P(𝑥) holds ultimately if
there exists 𝑎0 ∈ R such that P(𝑥) holds for all 𝑥 > 𝑎0. We define an equivalence
relation on the set ℱ of real valued functions which are defined on a real half-line
by writing 𝑓 =∞ 𝑔 if we have 𝑓(𝑥) = 𝑔(𝑥) ultimately. We denote by [𝑓 ] the class
of equivalence of a function 𝑓 ∈ ℱ for the equivalence relation =∞. The quotient
set 𝒢 := ℱ/=∞ is endowed with operations of addition and multiplication induced
by those of ℱ making 𝒢 into a commutative ring. The classes of equivalence for
this relations are called the germs of functions at +∞. To simplify the writing we
will identify the germ [𝑓 ] with its representant 𝑓 . We consider the field R of real
numbers as a subring of 𝒢, by identifying a real number 𝑎 with the germ of the
function 𝑥 ↦→ 𝑎.

We denote by 𝒢1 the subring of 𝒢 consisting of the germs of functions that
are ultimately of class 𝐶1. A subring ℵ of 𝒢1 is called a Hardy field if ℵ is a
field which is stable by derivation. Functions belonging to a Hardy field ℵ have
the following properties: they are ultimately strictly monotone unless they are
ultimately constant, they are ultimately of constant sign unless they are ultimately
identically vanishing. It follows that for every 𝑓 ∈ ℵ the limit lim𝑥→+∞ 𝑓(𝑥) exists
in R ∪ {+∞, −∞}, and that for every 𝑓 , 𝑔 ∈ ℵ we have ultimately one of the
following cases 𝑓(𝑥) < 𝑔(𝑥), 𝑔(𝑥) < 𝑓(𝑥), 𝑓(𝑥) = 𝑔(𝑥).

We say that an element 𝑓 of ℵ is bounded if lim𝑥→+∞ 𝑓(𝑥) ∈ R, infinitesimal
if lim𝑥→+∞ 𝑓(𝑥) = 0, and infinite if lim𝑥→+∞ |𝑓(𝑥)| = +∞.

If 𝑓, 𝑔 ∈ ℵ and 𝑔 is infinite and ultimately positive, then 𝑓 ∘ 𝑔 ∈ 𝒢1 is by
definition the germ in 𝒢1 such that ultimately (𝑓 ∘ 𝑔 )(𝑥) = 𝑓(𝑔(𝑥)).

In our work we will need the following results.

Theorem 2.1. [1, 19]. Let 𝑓 be an infinite and ultimately positive element of
a Hardy field ℵ. Then there exists a Hardy field ℋ and a germ 𝑔 ∈ ℋ such that 𝑔 is
an infinite and ultimately positive element of the Hardy field ℋ and (𝑓 ∘ 𝑔)(𝑥) = 𝑥
ultimately. 𝑔 is called the inverse of 𝑓 and is denoted by 𝑔⟨−1⟩.

Theorem 2.2. [1, 18, 20]. Let 𝐹 (𝑌 ), 𝐺(𝑌 ) ∈ ℵ[𝑌 ] and 𝑦 ∈ 𝒢1 be such that
𝐺(𝑦) ̸= 0 and 𝑦′ 𝐺(𝑦) = 𝐹 (𝑦) (in 𝒢1). Then the ring of germs ℵ[𝑦] is an integral
domain with fraction field ℵ(𝑦) ⊂ 𝒢1, and ℵ(𝑦) is a Hardy field.
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As a consequence of this theorem, it follows that a Hardy field ℵ can be
enlarged to a Hardy field ℵ0 containing the germ 𝐼𝑑 of the identity function and
the germ ln of the logarithmic function. The following theorem provides a strong
generalization of this remark.

Theorem 2.3. [7] Let ℵ be a Hardy field. There exists a Hardy field ℵ1 con-
taining ℵ such that the germs at +∞ of the functions exp ∘𝑓 , ln ∘|𝑓 | belong to ℵ1
for every function 𝑓 ∈ ℵ1 which is not ultimately identically vanishing.

A positive function measurable fuction 𝑓 defined on some neighborhood of +∞
is said to be regularly varying with index 𝜏 ∈ R if lim𝑥→+∞

𝑓(𝐶𝑥)
𝑓(𝑥) = 𝐶𝜏 , 𝐶 > 0. We

set I(𝑓) := 𝜏 . If I(𝑓) = 0, then we will say that the function 𝑓 is slowly varying.
If 𝑓 is regularly varying with index 𝜏 , then there exists a slowly varying function

𝐿 such that for 𝑓(𝑥) = 𝑥𝜏 𝐿(𝑥), for sufficiently large values of 𝑥.
Let 𝑓 be a function defined on an interval of the form [𝑎, +∞[ such that 𝑓 is

strictly positive and belongs as a germ at +∞ to a Hardy field. Then according to
[12], the function 𝑓 is regularly varying if and only if lim𝑥→+∞

𝑥𝑓 ′(𝑥)
𝑓(𝑥) ∈ R. Then

we have I(𝑓) = lim𝑥→+∞
𝑥𝑓 ′(𝑥)
𝑓(𝑥) .

Theorem 2.4 (Potter’s bounds, [6]). Let 𝑓 be a regularly varying function of
index 𝜏 . For every 𝜀 > 0, we have ultimately (1 − 𝜀)𝑥𝜏−𝜀 6 𝑓(𝑥) 6 (1 + 𝜀)𝑥𝜏+𝜀.

Let 𝜇 : R*
+ → R be a function of class 𝐶2 on R+

* which belongs, as a germ at
+∞, to a Hardy field ℵ containing the germ at +∞ of the function 𝑥 ↦→ ln 𝑥. Since
the function 𝜇 belongs as a germ at +∞ to the Hardy field ℵ, it follows that the
limit 𝜎(𝜇) := lim𝑡→+∞

ln(𝑡)
𝜇(𝑡) exists in R+ ∪ {+∞}. 𝜎(𝜇) is called the order of the

function 𝜇. We assume that 0 < 𝜎(𝜇) < +∞. It follows then that we have
lim

𝑡→+∞
𝜇(𝑡) = +∞, 𝜇(𝑡) = 𝑂

𝑡→+∞
(𝑡)

Furthermore, we have by virtue of L’Hopital’s rule, lim𝑡→+∞ 𝑡𝜇′(𝑡) = 1
𝜎(𝜇) . Thence

we have lim𝑡→+∞
𝑡𝜇′(𝑡)
𝜇(𝑡) = 0. Consequently the function 𝜇 is slowly varying.

Consider the function ℳ𝜇 defined on ]0, +∞[ by ℳ𝜇(𝑡) := 𝑡𝑡𝑒𝑡𝜇(𝑡), 𝑡 > 0. The
functions Ω𝜇 and 𝐻𝜇 are defined on R*

+ by

Ω𝜇(𝑥) := inf
𝑡>0

[︂
ℳ𝜇(𝑡)

𝑥𝑡

]︂
, 𝑥 > 0, 𝐻

𝜇
(𝑥) = inf

𝑡>0

[︂
ℳ𝜇(𝑡)

𝑡𝑡𝑥𝑡

]︂
, 𝑥 > 0

We consider also the sequence 𝑀𝜇 := (𝑀𝑛)𝑛∈N* defined by 𝑀𝑛 := ℳ𝜇(𝑛), 𝑛 ∈ N*.
Let 𝑊 be a nontrivial interval of R. The Carleman class 𝐶𝑀𝜇

(𝑊 ) is the set of
functions 𝑓 of class 𝐶∞ on 𝑊 such that sup𝑥∈𝑊 |𝑓 (𝑛)(𝑥)| 6 𝐶𝜌𝑛𝑀𝑛, 𝑛 ∈ N* where
𝐶, 𝜌 > 0 are real constants.

We denote by Λ𝑀𝜇
the set of sequences (𝑎𝑛)𝑛∈N of complex numbers such that

|𝑎𝑛| 6 𝐶𝜌𝑛𝑀𝑛, 𝑛 ∈ N* where 𝐶, 𝜌 > 0 are constants. We denote by 𝜔𝜇 and ℎ𝜇 the
functions defined by 𝜔𝜇(𝑥) := − ln[Ω𝜇(𝑥)] and ℎ𝜇(𝑥) := − ln[𝐻𝜇(𝑥)], respectively.

Let 𝛾𝜇 denote the function ultimately defined by the system

(2.1) 𝑥 = 𝑡2𝜇′(𝑡), 𝛾𝜇(𝑥) = 𝜇(𝑡) + 𝑡𝜇′(𝑡),
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the parameter 𝑡 being uniquely determined by 𝑥. We denote then 𝑡 by 𝑡0(𝑥).
Let 𝜙𝜇 denote the function defined by 𝜙𝜇(𝑥) := 𝜔𝜇(𝑥) − 𝑥𝜔′

𝜇(𝑥) for sufficiently
large values of 𝑥.

The following propositions will play a crucial role in the proof of our main result.

Proposition 2.1. 1. The function 𝜔𝜇 is ultimately well defined by the system

(2.2) 𝑥 = 𝑒𝑡 exp[𝜇(𝑡) + 𝑡𝜇′(𝑡)], 𝜔𝜇(𝑥) = 𝑡 + 𝑡2𝜇′(𝑡)

the parameter 𝑡 being ultimately uniquely determined by 𝑥. We denote then 𝑡 by
𝑡1(𝑥).

2. The function 𝜔𝜇 is ultimately strictly concave.
3. The function 𝜙𝜇 is ultimately well defined by the system

(2.3) 𝑥 = 𝑒𝑡 exp[𝜇(𝑡) + 𝑡𝜇′(𝑡)], 𝜙𝜇(𝑥) = 𝑡2𝜇′(𝑡)

the parameter 𝑡 being ultimately uniquely determined by 𝑥.
4. The function 𝜙𝜇 is an increasing diffeomorphism between neighborhoods of

+∞. The inverse function 𝒩𝜇 := 𝜙
⟨−1⟩
𝜇 is ultimately defined by the system

(2.4) 𝑥 = 𝑡2𝜇′(𝑡), 𝒩𝜇(𝑥) = 𝑒𝑡 exp[𝜇(𝑡) + 𝑡𝜇′(𝑡)]

the parameter 𝑡 being ultimately uniquely determined by 𝑥
5. The function ℎ𝜇 is ultimately well defined by the system

(2.5) 𝑥 = exp[𝜇(𝑡) + 𝑡𝜇′(𝑡)], ℎ𝜇(𝑥) = 𝑡2𝜇′(𝑡)

the parameter 𝑡 being utimatey uniquely determined by 𝑥. Furthermore ℎ𝜇 is ul-
timately positive and infinite so it has an inverse ℎ

⟨−1⟩
𝜇 which belongs to a Hardy

field.
6. Each of the function 𝜔𝜇, 𝜙𝜇, ℎ𝜇, 𝒩𝜇, 𝛾𝜇 belongs to a Hardy field.
7. The function 𝛾𝜇 is slowly varying and the function 𝜔𝜇 is regularly varying

of index

(2.6) I(𝜔𝜇) = 𝜎(𝜇)
1 + 𝜎(𝜇) .

8. The function 𝛾𝜇 is ultimately positive and infinite and we have

(2.7) 𝛾𝜇(𝑥) − 𝜇(𝑥) = 𝑂
𝑥→+∞

(1)

9. We have ultimately

𝜔′
𝜇(𝒩𝜇(𝑥)) = 𝑒−𝛾𝜇(𝑥)

𝑒
,(2.8)

𝛾𝜇(𝑥)) = ln(ℎ⟨−1⟩
𝜇 (𝑥)).(2.9)

10. The following relations hold for every 𝛼 ∈ R*
+

𝜇(𝛼𝑥) − 𝜇(𝑥) = 𝑂
𝑥→+∞

(1),(2.10)

lim
𝑥→+∞

𝑒−𝛼𝜙𝜇(𝑥)

𝜙′
𝜇(𝑥) = 0.(2.11)
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Proof. 1. Thanks to [4], the function ℎ𝜇 is ultimately well defined by the
system

𝑥 = exp[𝜇(𝑡) + 𝑡𝜇′(𝑡)], ℎ𝜇(𝑥) = 𝑡2𝜇′(𝑡)
Consider then the function 𝜇̄ : 𝑥 ↦→ 𝜇(𝑥) + ln(𝑥). It belongs to the Hardy field ℵ
and we have 𝜎(𝜇̄) = 𝜎(𝜇)

𝜎(𝜇)+1 ∈ ]0, +∞[. It follows that the function ℎ𝜇̄ is ultimately
well defined by the system

𝑥 = exp[𝜇̄(𝑡) + 𝑡𝜇̄′(𝑡)], ℎ𝜇̄(𝑥) = 𝑡2𝜇̄′(𝑡)
that is by the system

𝑥 = 𝑒𝑡 exp[𝜇(𝑡) + 𝑡𝜇′(𝑡)], ℎ𝜇̄(𝑥) = 𝑡 + 𝑡2𝜇′(𝑡)
But we know that ℎ𝜇̄ = 𝜔𝜇, thence the function 𝜔𝜇 is ultimately well defined by
the system

𝑥 = 𝑒𝑡 exp[𝜇(𝑡) + 𝑡𝜇′(𝑡)], 𝜔𝜇(𝑥) = 𝑡 + 𝑡2𝜇′(𝑡)
the parameter 𝑡 being ultimately uniquely determined by 𝑥.

On the other hand, since

𝑡2𝜇′(𝑡) ∼
𝑡→+∞

1
𝜎(𝜇) 𝑡, exp[𝜇(𝑡) + 𝑡𝜇′(𝑡)] ∼

𝑡→+∞
𝑒

1
𝜎(𝜇) 𝑒𝜇(𝑡)

it follows that lim𝑥→+∞ ℎ𝜇(𝑥) = +∞. Consequently ℎ𝜇 is ultimately positive and
infinite. Thence according to Theorem 2.1 above, the function ℎ𝜇 has an inverse
ℎ

⟨−1⟩
𝜇 which belongs to a Hardy field.

2. It follows from the definition of the function 𝜔𝜇 that it is ultimately of class
𝐶1. Direct computations from the system (2.2) prove then that the function 𝜔′

𝜇

has ultimately the following parametrical representation

(2.12) 𝑥 = 𝑒𝑡 exp[𝜇(𝑡) + 𝑡𝜇′(𝑡)], 𝜔′
𝜇(𝑥) = 1

𝑒 exp[𝜇(𝑡) + 𝑡𝜇′(𝑡)]
It follows that the function 𝜔′

𝜇 is ultimately strictly decreasing. Then that the
function 𝜔𝜇 is ultimately strictly concave.

3. Direct computations from system (2.2) lead to the system representing
ultimately the function 𝜙𝜇.

4. It is clear that the function 𝐹1 : 𝑡 → 𝑒𝜇(𝑡)+𝑡𝜇′(𝑡) which belongs as a germ at
+∞ to the Hardy field ℵ, is ultimately strictly increasing and satisfies lim

𝑥→+∞
𝐹1(𝑡) =

+∞. Thence, according to Theorem 2.1, the function 𝐹1 has an inverse 𝑔 belonging
to a Hardy field ℵ1 which contains the identity.

The function ℎ𝜇 is ultimately of the class 𝐶1, and, according to (2.5), we have
ultimately

ℎ′
𝜇(𝑥) =

𝑑(𝑡𝑒𝜇′(𝑡))
𝑑𝑡 (𝑔(𝑥))

𝑑(𝑒𝜇(𝑡)+𝑡𝜇′(𝑡))
𝑑𝑡 (𝑔(𝑥))

= 𝑔(𝑥)
𝑒𝜇(𝑔(𝑥))+𝑔(𝑥)𝜇′(𝑡(𝑥)) = 𝑔(𝑥)

𝑥

Hence we have ultimately 𝑥ℎ′
𝜇(𝑥) = 𝑔(𝑥). It follows, according to Theorem 2 above,

that ℵ1[ℎ𝜇] is an integral domain whose fraction field ℵ1(ℎ𝜇) is a Hardy field which
contains the function ℎ𝜇 as a germ at +∞. By a similar proof we obtain that ℎ𝜇̄
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belongs to a Hardy field. Since 𝜔𝜇 = ℎ𝜇̄ it follows then that the function 𝜔𝜇 belongs
as a germ at +∞ to a Hardy field.

It is obvious that the function 𝜙𝜇 belongs to the same Hardy field ℵ as 𝜔𝜇.
Furthermore direct computations, based on the system representing 𝜙𝜇 on some
neighborhood of +∞, show that 𝜙𝜇 is infinite and ultimately positive. It follows
then that 𝜙𝜇 is ultimately strictly increasing. Thence 𝜙𝜇 is a diffeomorphism
between neighborhoods of +∞ whose inverse 𝒩𝜇 belongs to a Hary field. It is clear
that the function 𝒩𝜇 is ultimately well defined by the system

𝑥 = 𝑡2𝜇′(𝑡), 𝒩𝜇(𝑥) = 𝑒𝑡 exp[𝜇(𝑡) + 𝑡𝜇′(𝑡)]
the parameter 𝑡 being ultimately uniquely determined by 𝑥.

Direct computations from systems (2.1), (2.2), (2.4) prove that we have ulti-
mately 𝛾𝜇(ℎ𝜇(𝑥)) = ln(𝑥), that is 𝛾𝜇(𝑥) = ln(ℎ⟨−1⟩

𝜇 (𝑥))
It follows, according to Theorem 3 above, that there exists a Hardy field con-

taining the function 𝛾𝜇. It follows also from the relation (2.9) that 𝛾𝜇 is ultimately
positive and infinite.

Direct computations from systems (2.1), (2.2), (2.4) prove also that relation
(2.8) holds ultimately.

5. The function 𝜔𝜇 belongs to a Hardy field and we have

lim
𝑥→+∞

𝑥𝜔′
𝜇(𝑥)

𝜔𝜇(𝑥) = lim
𝑥→+∞

𝑡1(𝑥)
𝑡1(𝑥) + 𝑡1(𝑥)2𝜇′(𝑡1(𝑥))

= lim
𝑥→+∞

1
1 + 𝑡1(𝑥)𝜇′(𝑡1(𝑥)) = 𝜎(𝜇)

1 + 𝜎(𝜇)

Thence the function 𝜔𝜇 is regularly varying with index I(𝜔𝜇) = 𝜎(𝜇)
1+𝜎(𝜇) .

6. The function 𝛾𝜇 belongs as a germ at +∞ to a Hardy field and we have

lim
𝑥→+∞

𝑥𝛾′
𝜇(𝑥)

𝛾𝜇(𝑥) = lim
𝑡→+∞

𝑡𝜇′(𝑡)
𝜇(𝑡) + 𝑡𝜇′(𝑡) = lim

𝑡→+∞

𝑡𝜇′(𝑡)
𝜇(𝑡)

1 + 𝑡𝜇′(𝑡)
𝜇(𝑡)

= 0

Thence 𝛾𝜇 is slowly varying.
7. Since 𝛾𝜇 is slowly varying it follows, according to Theorem 2.4 above, that

we have ultimately 0 6 𝛾𝜇(𝑥) 6
√

𝑥. It follows that 𝛾𝜇(𝑥) = 𝑜𝑥→+∞(𝑥).
On the other hand, according to (2.1), we have ultimately

𝛾𝜇(𝑥) − 𝜇(𝑥) = 𝜇(𝑡0(𝑥)) + 𝑡0(𝑥)𝜇′(𝑡0(𝑥)) − 𝜇(𝑥)

= (𝑡0(𝑥) − 𝑥)
𝑣

𝑣𝜇′(𝑣) + 𝑡0(𝑥)𝜇′(𝑡0(𝑥))

where 𝑣 lies between 𝑥 and 𝑡0(𝑥). Since

𝑥 = 𝑡0(𝑥)2𝜇′(𝑡0(𝑥)) ∼
𝑥→+∞

1
𝜎(𝜇) 𝑡0(𝑥)

it follows that 𝑡0(𝑥)−𝑥
𝑣 = 𝑂𝑥→+∞(1). Consequently we have

𝛾𝜇(𝑥) − 𝜇(𝑥) = 𝑂
𝑥→+∞

(1)
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8. We have

lim
𝑥→+∞

𝑒−𝛼𝜙𝜇(𝑥)

𝜙′
𝜇(𝑥) = lim

𝑡→+∞

𝑒[1 + 2𝑡𝜇′(𝑡) + 𝑡2𝜇′′(𝑡)] exp[𝜇(𝑡) + 𝑡𝜇′(𝑡) − 𝛼𝑡2𝜇′(𝑡)]
2𝑡𝜇′(𝑡) + 𝑡2𝜇′′(𝑡)

Thence we have by virtue of L’Hopital’s rule that

lim
𝑡→+∞

−𝑡2𝜇′′(𝑡) = lim
𝑡→+∞

𝑡𝜇′(𝑡) = lim
𝑡→+∞

𝜇(𝑡)
ln 𝑡

= 1
𝜎(𝜇)

Consequently the following estimate holds

𝑒[1 + 2𝑡𝜇′(𝑡) + 𝑡2𝜇′′(𝑡)] exp[𝜇(𝑡) + 𝑡𝜇′(𝑡) − 𝛼𝑡2𝜇′(𝑡)]
2𝑡𝜇′(𝑡) + 𝑡2𝜇′′(𝑡)

∼
𝑡→+∞

𝑒(1 + 𝜎(𝜇))𝑒
1

𝜎(𝜇) exp[𝜇(𝑡) − 𝛼𝑡2𝜇′(𝑡)].

But I(𝜇) = 0 and I(𝑡 ↦→ 𝛼𝑡2𝜇′(𝑡)) = 1, hence we have, according to Theorem 2.4
above, that 𝜇(𝑡) = 𝑂𝑡→+∞(𝛼𝑡2𝜇′(𝑡)). It follows that

lim
𝑡→+∞

𝑒(1 + 𝜎(𝜇))𝑒
1

𝜎(𝜇) exp[𝜇(𝑡) − 𝛼𝑡2𝜇′(𝑡)] = 0.

Consequently we have

lim
𝑥→+∞

𝑒−𝛼𝜙𝜇(𝑥)

𝜙′
𝜇(𝑥) = 0.

On the other hand, according to the mean value theorem, we have for all 𝑥 > 0

|𝜇(𝛼𝑥) − 𝜇(𝑥)| = |𝛼 − 1||𝑥𝜇′(𝑢)| = |𝛼 − 1|𝑥
𝑢

|𝑢𝜇′(𝑢)|

where 𝑢 lies between 𝛼𝑥 and 𝑥. It follows that

|𝜇(𝛼𝑥) − 𝜇(𝑥)| 6 |𝛼 − 1| max
(︁

𝛼, 1/𝛼
)︁

|𝑢𝜇′(𝑢)|

Since lim𝑠→+∞ 𝑡𝜇′(𝑡) = 1
𝜎(𝜇) < +∞, it follows then that

𝜇(𝛼𝑥) − 𝜇(𝑥) = 𝑂
𝑥→+∞

(1) �

Proposition 2.2. Let 𝐼 be a nontrivial compact interval of R and 𝑎 ∈ 𝐼. The
so-called Borel mapping 𝒯 : 𝐶𝑀𝜇

(𝐼) → Λ𝑀𝜇
, 𝑓 ↦→ (𝑓 (𝑛)(𝑎))𝑛∈N is surjective.

Proof. Following Petzsche [17, p. 300], we set

𝑚*
𝑝 := 𝑀𝑝

𝑝𝑀𝑝−1
, 𝑝 ∈ N*.

We have then for every 𝑝 ∈ N*

𝑚*
2𝑝

𝑚*
𝑝

= 1
2

𝑀2𝑝/𝑀2𝑝−1

𝑀𝑝/𝑀𝑝−1
= 22𝑝𝑝2𝑝

2(2𝑝 − 1)2𝑝−1
(𝑝 − 1)𝑝−1

𝑝𝑝

× exp[2𝑝𝜇(2𝑝) − (2𝑝−1)𝜇(2𝑝−1) − 𝑝𝜇(𝑝) − (𝑝−1)𝜇(𝑝−1)]

=
(1 − 1

𝑝 )𝑝−1

(1 − 1
2𝑝 )2𝑝−1 exp[2𝑝𝜇(2𝑝) − (2𝑝−1)𝜇(2𝑝−1) − 𝑝𝜇(𝑝) − (𝑝−1)𝜇(𝑝−1)].
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But we have

2𝑝𝜇(2𝑝) − (2𝑝 − 1)𝜇(2𝑝 − 1) = 𝑧2𝑝𝜇′(𝑧2𝑝) + 𝜇(𝑧2𝑝),
𝑝𝜇(𝑝) − (𝑝 − 1)𝜇(𝑝 − 1) = 𝑧𝑝𝜇′(𝑧𝑝) + 𝜇(𝑧𝑝)

where 𝑧2𝑝 ∈ [2𝑝−1, 2𝑝] and 𝑧𝑝 ∈ [𝑝−1, 𝑝]. It follows that there exists 𝑤𝑝 ∈ [𝑝−1, 2𝑝]
such that

2𝑝𝜇(2𝑝) − (2𝑝 − 1)𝜇(2𝑝 − 1) − [𝑝𝜇(𝑝) − (𝑝 − 1)𝜇(𝑝 − 1)]
= 𝑧2𝑝𝜇′(𝑧2𝑝) + 𝜇(𝑧2𝑝) − (𝑧𝑝𝜇′(𝑧𝑝) + 𝜇(𝑧𝑝))
= (𝑧2𝑝 − 𝑧𝑝)(𝑤𝑝𝜇′′(𝑤𝑝) + 2𝜇′(𝑤𝑝))

= (𝑧2𝑝 − 𝑧𝑝)𝜇′(𝑤𝑝)
[︁𝑤𝑝𝜇′′(𝑤𝑝) + 𝜇′(𝑤𝑝)

𝜇′(𝑤𝑝) + 1
]︁

On the other hand, the limit lim𝑥→+∞
𝑥𝜇′′(𝑥))+𝜇′(𝑥)

𝜇′(𝑥) exists and we have

lim
𝑥→+∞

𝑥𝜇′(𝑥)
𝜇(𝑥) = 0.

From L’Hopital’s rule, it follows

(2.13) lim
𝑥→+∞

𝑥𝜇′′(𝑥)) + 𝜇′(𝑥)
𝜇′(𝑥) = 0

Furthermore we have 𝑧2𝑝 − 𝑧𝑝 > 1
2 𝑤𝑝 − 1. Thence we have for large values of 𝑝

(2.14) (𝑧2𝑝 − 𝑧𝑝)𝜇′(𝑤𝑝) > 1
2

[︁𝑤𝑝 − 2
𝑤𝑝

]︁
𝑤𝑝𝜇′(𝑤𝑝)

We conclude from (2.13) and (2.14) that

lim inf
𝑝→+∞

[2𝑝𝜇(2𝑝) − (2𝑝 − 1)𝜇(2𝑝 − 1)] − [𝑝𝜇(𝑝) − (𝑝 − 1)𝜇(𝑝 − 1)] > 1
2𝜎(𝜇)

It follows that

lim inf
𝑝→+∞

𝑚*
2𝑝

𝑚*
𝑝

> 𝑒
1

2𝜎(𝜇) > 1.

Thence a slight refinement of a theorem in [17, pp. 300 and 311] yields that the
Borel mapping 𝒯 is surjective. �

Direct computations show that 𝜇 and 𝛾𝜇 can be extended to R*
+ in a way to

be functions of class 𝐶1 on R*
+ such that −𝜀 6 𝜇(𝑥) − 𝛾𝜇(𝑥) 6 𝜀,𝑥 ∈ R*

+ where 𝜀
is a positive constant. From now on we will do so and we will set for every 𝐴 > 0,
𝑛 ∈ N and for every nonempty subset 𝑆 of C

𝑆𝜇,𝐴,𝑛 := 𝑆𝐴𝑒−𝜇(𝑛) , 𝑆𝛾𝜇,𝐴,𝑛 := 𝑆𝐴𝑒−𝛾𝜇(𝑛) .

Thence the following inclusions hold for all 𝑛 ∈ N.

𝑆𝛾𝜇,𝐴𝑒−𝜀,𝑛 ⊂ 𝑆𝜇,𝐴,𝑛 ⊂ 𝑆𝛾𝜇,𝐴𝑒𝜀,𝑛.
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3. Statement of the main result

The main result of this paper is the following.

Theorem 3.1. 1. Let 𝑓 ∈ 𝐶𝑀𝜇([−1, 1]); then there exists constants 𝐶 > 0,
𝐴 > 0, 0 < 𝜌 < 1 and a sequence (𝑃𝑛)𝑛>1 of rational functions defined on Cr{𝑖, −𝑖}
such that

∑︀
𝑃𝑛 is uniformly convergent on [−1, 1] to 𝑓 and

‖𝑃𝑛‖∞,[−1,1]𝜇,𝐴,𝑛
6 𝐶𝜌𝑛, 𝑛 ∈ N, 𝑓(𝑥) =

∞∑︁
𝑛=1

𝑃𝑛(𝑥), 𝑥 ∈ [−1, 1]

2. Conversely, let us assume that there exist some constants 𝐶 > 0, 𝐴 > 0,
0 < 𝜌 < 1 and a sequence 𝑓𝑛 ∈ 𝒪([−1, 1]𝜇,𝐴,𝑛) of holomorphic functions such that
‖𝑓𝑛‖∞,[−1,1]𝜇,𝐴,𝑛

6 𝐶𝜌𝑛, 𝑛 ∈ N*. Then the function series
∑︀

𝑓𝑛 is uniformly con-
vergent on [−1, 1] to a function 𝑓 which belongs to the Carleman class 𝐶𝑀𝜇([−1, 1]).

4. Proof of the main result

4.1. Direct part.

Proposition 4.1. Let 𝑔 : [−𝜋, 𝜋] −→ 𝐶 be a restriction of a 2𝜋-periodic func-
tion of class 𝐶∞ on R. Let us assume that 𝑔 ∈ 𝐶𝑀𝜇([−𝜋, 𝜋]); then there exist
constants 𝐴 > 0, 𝐶 > 0, 0 < 𝜌 < 1 and a sequence (𝑔𝑛)𝑛>0 of rational functions
defined on C* such that

‖𝑔𝑛‖∞,𝒦𝛾𝜇,𝐴,𝑛
6 𝐶𝜌𝑛, 𝑛 ∈ N, 𝑔(𝜃) =

∞∑︁
𝑛=0

𝑔𝑛(𝑒𝑖𝜃), 𝜃 ∈ [−𝜋, 𝜋]

where 𝒦𝛾𝜇,𝐴,𝑛 :=
{︀

𝑧 ∈ C, 1 − 𝐴𝑒−𝛾𝜇(𝑛) < |𝑧| < 1 + 𝐴𝑒−𝛾𝜇(𝑛)}︀.

Proof. The Fourier series expansion of 𝑔 can be written for all 𝜃 ∈ [−𝜋, 𝜋] as

𝑔(𝜃) =
∑︁
𝑝∈Z

𝑎𝑝𝑒𝑖𝑝𝜃 where 𝑎𝑝 = 1
2𝜋

∫︁ 𝜋

−𝜋

𝑔(𝜃)𝑒−𝑖𝑝𝜃𝑑𝜃, 𝑝 ∈ Z.

According to [16], the following estimations hold

(4.1) |𝑎𝑝| 6 𝐶0𝑒−𝐶1𝜔𝜇(|𝑝|), 𝑝 ∈ Z

with some constants 𝐶0, 𝐶1 > 0.
Let us set for all 𝑧 ∈ C* and 𝑛 ∈ N*

𝑔0(𝑧) :=
∑︁

|𝑝|<𝒩𝜇(1)

𝑎𝑝𝑧𝑝, 𝑔𝑛(𝑧) :=
∑︁

𝒩𝜇(𝑛)6|𝑝|<𝒩𝜇(𝑛+1)

𝑎𝑝𝑧𝑝.

Then for all 𝑛 ∈ N*, 𝑔𝑛 is a rational function defined on C*. Furthermore the
following estimates hold

(4.2) |𝑔𝑛(𝑧)| 6 𝐶0
∑︁

𝒩𝜇(𝑛)6|𝑝|<𝒩𝜇(𝑛+1)

𝐶0𝑒−𝐶1𝜔𝜇(𝑝)(|𝑧|𝑝 + |𝑧|−𝑝), 𝑧 ∈ C*.
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If 𝑧 ∈ 𝒦 𝐶1
2𝑒 ,𝑛

, then the estimates become

|𝑔𝑛(𝑧)| 6 𝐶0
∑︁

𝒩𝜇(𝑛)6|𝑝|<𝒩𝜇(𝑛+1)

𝑒−𝐶1𝜔𝜇(𝑝)
[︂(︁

1+ 𝐶1

2𝑒
𝑒−𝛾𝜇(𝑛)

)︁𝑝

+
(︁

1− 𝐶1

2𝑒
𝑒−𝛾𝜇(𝑛)

)︁−𝑝
]︂
.

We have for large values of 𝑛(︁
1 − 𝐶1

2𝑒
𝑒−𝛾𝜇(𝑛)

)︁−1
6 1 + 𝐶1

𝑒
𝑒−𝛾𝜇(𝑛).

It follows that we have for such values of 𝑛

‖𝑔𝑛‖∞𝒦
𝛾𝜇,

𝐶1
2𝑒

,𝑛
6 𝐶0(1+𝒩𝜇(𝑛+1)−𝒩𝜇(𝑛)) max

𝒩𝑛6𝑝<𝒩𝑛+1
2 exp

[︂
−𝐶1𝜔𝜇(𝑝)+𝐶1𝑝

𝑒−𝛾𝜇(𝑛)

𝑒

]︂
.

On the other hand we have for 𝑛 sufficiently large
𝑒−𝛾𝜇(𝑛)

𝑒
= 𝜔′

𝜇(𝒩𝜇(𝑛))

Consequently we have for such values of 𝑛

‖𝑔𝑛‖∞,𝒦
𝛾𝜇,

𝐶1
2𝑒

,𝑛
6 𝐶0(1 + 𝒩𝜇(𝑛 + 1) − 𝒩𝜇(𝑛))

max
𝒩𝜇(𝑛)6𝑝<𝒩𝜇(𝑛+1)

2 exp
[︀

− 𝐶1
(︀
𝜔𝜇(𝑝) − 𝜔′

𝜇(𝒩𝜇(𝑛))𝑝
)︀]︀

But by virtue of Proposition 2.1, 𝜔𝜇 is ultimately strictly concave. It follows that
the function ℎ𝑛 : R*

+ → R, 𝑥 ↦→ −𝐶1[𝜔(𝑥) − 𝜔′
𝜇(𝒩𝜇(𝑛))𝑥] is ultimately strictly

concave, thence we have for large values of 𝑛 that for all 𝑥 ∈ [𝒩𝜇(𝑛), 𝒩𝜇(𝑛 + 1)] we
have

ℎ′
𝑛(𝑥) = −𝐶1[𝜔′(𝑥) − 𝜔′

𝜇(𝒩𝜇(𝑛))] < 0
Thence the function ℎ𝑛 is, for large values of 𝑛, strictly decreasing on the interval
[𝒩𝜇(𝑛), 𝒩𝜇(𝑛+1)]. It follows that the following estimates hold for large values of 𝑛

‖𝑔𝑛‖∞,𝒦
𝛾𝜇,

𝐶1
2𝑒

,𝑛

6 𝐶0[1 + 𝒩𝜇(𝑛 + 1) − 𝒩𝜇(𝑛)] exp[−𝐶1(𝜔(𝒩𝜇(𝑛)) − 𝒩𝜇(𝑛)𝜔′(𝒩𝜇(𝑛)))]
6 𝐶0[1 + 𝒩𝜇(𝑛 + 1) − 𝒩𝜇(𝑛)] exp[−𝐶1𝜙𝜇(𝒩𝜇(𝑛))]
6 𝐶0[1 + 𝒩𝜇(𝑛 + 1) − 𝒩𝜇(𝑛)]𝑒−𝐶1𝑛

6 𝐶0
[︀
𝑒

𝐶1
2 (𝒩𝜇(𝑛 + 1) − 𝒩𝜇(𝑛))𝑒− 𝐶1

2 (𝑛+1) + 1
]︀
𝑒− 𝐶1

2 𝑛

Since 𝒩𝜇 is ultimately strictly convex, we can write for large values of 𝑛

‖𝑔𝑛‖∞,𝒦
𝛾𝜇,

𝐶1
2𝑒

,𝑛
6 𝐶0

[︀
𝑒

𝐶1
2 𝒩 ′

𝜇(𝑛 + 1)𝑒− 𝐶1
2 (𝑛+1) + 1

]︀
𝑒− 𝐶1

2 𝑛

6 𝐶0

[︂
𝑒

𝐶1
2

𝑒− 𝐶1
2 𝜙𝜇(𝒩𝜇(𝑛+1))

𝜙′
𝜇(𝒩𝜇(𝑛 + 1)) + 1

]︂
𝑒− 𝐶1

2 𝑛

According to (2.11) we have

𝐶0

[︂
𝑒

𝐶1
2

𝑒− 𝐶1
2 𝜙𝜇(𝒩𝜇(𝑛+1))

𝜙′
𝜇(𝒩𝜇(𝑛 + 1)) + 1

]︂
𝑒− 𝐶1

2 𝑛 ∼
𝑛→+∞

𝐶0𝑒− 𝐶1
2 𝑛
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Thence we have
‖𝑔𝑛‖∞,𝒦

𝛾𝜇,
𝐶1
2𝑒

,𝑛
6 𝐶2𝑒− 𝐶1

2 𝑛, 𝑛 ∈ N

where 𝐶2 > 0 is a constant. �

Proposition 4.2. Let 𝑓 ∈ 𝐶𝑀𝜇([−1, 1]); then there exists a function 𝐹 ∈
𝐶𝑀𝜇

(R) with support contained in the interval [−2, 2] and whose restriction to
[−1, 1] is the function 𝑓 .

Proof. According to Proposition 2.2, there exist 𝐹1 ∈ 𝐶𝑀𝜇
([−3, −1] and 𝐹2 ∈

𝐶𝑀𝜇
([1, 3]) such that 𝐹

(𝑛)
1 (−1) = 𝑓 (𝑛)(−1), 𝐹

(𝑛)
2 (1) = 𝑓 (𝑛)(1), 𝑛 ∈ N. On the other

hand, according to [22], there exists Φ ∈ 𝐶𝑀𝜇
(R) with support contained in [−2, 2]

such that Φ(𝑥) = 1, 𝑥 ∈ [−1, 1]. The function 𝐹 defined by
𝐹 (𝑥) = 𝑓(𝑥), 𝑥 ∈ [−1, 1]
𝐹 (𝑥) = 𝐹1(𝑥)Φ(𝑥), 𝑥 ∈ [−3, −1]
𝐹 (𝑥) = 𝐹2(𝑥)Φ(𝑥), 𝑥 ∈ [1, 3]
𝐹 (𝑥) = 0, 𝑥 ∈ Rr [−3, 3]

satisfies the required conditions. �

End of the proof of the direct part of the main theorem. Let 𝑓 ∈
𝐶𝑀𝜇

([−1, 1]). There exists, according to Proposition 4.2, a function 𝐹 ∈ 𝐶𝑀𝜇
(R)

whose support is contained in the interval [−2, 2] and whose restriction to [−1, 1]
is the function 𝑓 .

Let us consider the function 𝑔 defined on the interval [−𝜋, 𝜋] by
𝑔(𝜃) = 𝐹 (tan(𝜃/2)), 𝜃 ∈ ]−2 arctan(2), 2 arctan(2)[
𝑔(𝜃) = 0, 𝜃 ∈ Rr ]−2 arctan(2), 2 arctan(2)[

According to Cartan [11, Theorem III, pp. 24–27], the restriction of 𝑔 to the
interval 𝐽 := [−2 arctan(2), 2 arctan(2)] belongs to the Carleman class 𝐶𝑀𝜇(𝐽). But
𝑔 is itself the restriction to [−𝜋, 𝜋] of a 2𝜋-periodic, of class 𝒞∞ which is vanishing
on the set [−𝜋, 𝜋] r 𝐽 . Thence 𝑔 ∈ 𝐶𝑀𝜇

([−𝜋, 𝜋]).
According to Proposition 4.1 there exists constants 0 < 𝐴 < 1, 𝐶 > 0, 0 < 𝜌 <

1 and a sequence (𝑔𝑛)𝑛>1 of rational functions defined on C* such that

‖𝑔𝑛‖∞,𝒦𝛾𝜇,𝐴,𝑛
6 𝐶𝜌𝑛, 𝑛 ∈ N, 𝑔(𝜃) =

∞∑︁
𝑛=0

𝑔𝑛(𝑒𝑖𝜃), 𝜃 ∈ [−𝜋, 𝜋].

Let 𝑥 ∈ [−2, 2]. There exists a unique 𝜃 ∈ [−2 arctan(2), 2 arctan(2)] such that
𝑥 = tan

(︀
𝜃
2
)︀
, thence we have 𝐹 (𝑥) = 𝑔(𝜃) =

∑︀+∞
𝑛=1 𝑔𝑛

(︀
𝑖−𝑥
𝑖+𝑥

)︀
. On the other hand let

𝑧 ∈ C be such that | Im(𝑧)| < 1 (then 𝑧 ∈ C r {𝑖, −𝑖}). Let us set 𝜁 = 𝑖−𝑧
𝑖+𝑧 ; then

we have | Im(𝑧)| > |1−|𝜁||
1+|𝜁| . It follows that the following implication holds for every

𝐴′ ∈ ]0, 1[

| Im(𝑧)| 6 𝐴′𝑒−𝛾𝜇(𝑛) ⇒ 1 − 𝐴′𝑒−𝛾𝜇(𝑛)

1 + 𝐴′𝑒−𝛾𝜇(𝑛) 6 |𝜁| 6 1 + 𝐴′𝑒−𝛾𝜇(𝑛)

1 − 𝐴′𝑒−𝛾𝜇(𝑛)
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If we choose 𝐴′ ∈ ]0, 1[ sufficiently small, then we will obtain for every 𝑛 ∈ N

0 < 1 − 𝐴𝑒−𝛾𝜇(𝑛) <
1 − 𝐴′𝑒−𝛾𝜇(𝑛)

1 + 𝐴′𝑒−𝛾𝜇(𝑛) 6
1 + 𝐴′𝑒−𝛾𝜇(𝑛)

1 − 𝐴′𝑒−𝛾𝜇(𝑛) < 1 + 𝐴𝑒−𝛾𝜇(𝑛)

Let us set ℬ𝑛 := {𝑧 ∈ C : | Im(𝑧)| < 𝐴′𝑒−𝛾𝜇(𝑛)}. Thence the points 𝑖 and −𝑖
belong to Crℬ𝑛 and we have 𝑖−𝑧

𝑖+𝑧 ∈ 𝒦𝛾𝑛,𝐴,𝑛, 𝑧 ∈ ℬ𝑛. For each 𝑛 ∈ N, the function
𝑃𝑛 defined on C∖{𝑖, −𝑖} by 𝑃𝑛(𝑧) = 𝑔𝑛( 𝑖−𝑧

𝑖+𝑧 ) is a rational function satisfying

‖𝑃𝑛‖∞,ℬ𝑛 6 𝐶𝜌𝑛, 𝑛 ∈ N

We have also for all 𝑥 ∈ [−2, 2] that 𝐹 (𝑥) =
∑︀∞

𝑛=1 𝑃𝑛(𝑥). But [−1, 1]𝛾𝜇,𝐴′,𝑛 ⊂ ℬ𝑛

for all 𝑛 ∈ N; thence we have

𝑓(𝑥) =
∞∑︁

𝑛=1
𝑃𝑛(𝑥), 𝑥 ∈ [−1, 1], ‖𝑃𝑛‖∞,[−1,1]𝛾𝜇,𝐴′,𝑛

6 𝐶𝜌𝑛, 𝑛 ∈ N.

Then, it follows

𝑓(𝑥) =
∞∑︁

𝑛=1
𝑃𝑛(𝑥), 𝑥 ∈ [−1, 1], ‖𝑃𝑛‖∞,[−1,1]

𝜇,𝐴𝑒−𝜀′
,𝑛
6 𝐶𝜌𝑛, 𝑛 ∈ N. �

4.2. Converse part.

Proof. Let 𝐴 > 0 and for each 𝑛 ∈ N, a function 𝑓𝑛 : [−1, 1]𝜇,𝐴,𝑛 → C which
is holomorphic on [−1, 1]𝜇,𝐴,𝑛 such that

𝑓𝑛 ∈ 𝒪([−1, 1]𝜇,𝐴,𝑛), 𝑛 ∈ N*, ‖𝑓𝑛‖∞,[−1,1]𝜇,𝐴,𝑛
6 𝐶𝜌𝑛, 𝑛 ∈ N*.

It follows that ‖𝑓𝑛‖∞,[−1,1]𝛾𝜇,𝐴𝑒−𝜀,𝑛
6 𝐶𝜌𝑛, 𝑛 ∈ N*. Thence the function series∑︀

𝑓𝑛|[−1,1] converges uniformly on [−1, 1] to a continuous function 𝑓 .
We have [−1, 1] ⊂ [−1, 1]𝛾𝜇, 𝐴

2 𝑒−𝜀,𝑛 ⊂ [−1, 1]𝛾𝜇,𝐴𝑒−𝜀,𝑛. Cauchy’s inequalities
allow us to write for all 𝑝 ∈ N

(4.3) ‖𝑓 (𝑝)
𝑛 ‖∞,[−1,1] 6 𝐶𝑝!

(︁ 2
𝐴

𝑒𝜀
)︁𝑝

exp
[︀
𝑝𝛾𝜇(𝑛) − ln(𝜌−1/2)𝑛

]︀
𝜌−𝑛/2.

On the other hand the supremum, for sufficiently large 𝑝 ∈ N, of the function
𝑢 ↦→ 𝑝𝛾𝜇(𝑢) − ln

(︀
1/

√
𝜌
)︀
𝑢 on [0, +∞] is reached in the real 𝑢𝑝 > 0 that satisfies

𝛾′
𝜇(𝑢𝑝) = 1

𝑝 ln
(︀
1/

√
𝜌

)︀
. Since for sufficiently large 𝑝 ∈ N, we have 𝛾′

𝜇(𝑢𝑝) = 1/𝑡0(𝑢𝑝),
it follows that 𝑡0(𝑢𝑝) = 𝑝/ ln

(︀
1/

√
𝜌
)︀
. Consequently we can write

sup
𝑛∈N

[︀
𝑝𝛾𝜇(𝑛) − ln

(︀
1/

√
𝜌
)︀
𝑛

]︀
6 𝑝(𝛾𝜇(𝑢𝑝) − 𝑢𝑝𝛾′

𝜇(𝑢𝑝))(4.4)

6 𝑝𝜇(𝑡0(𝑢𝑝)) 6 𝑝𝜇
(︀
𝑝/ ln

(︀
1/

√
𝜌

)︀)︀
Thence we have for 𝑝 ∈ N sufficiently large we have for all 𝑛 ∈ N

‖𝑓 (𝑝)
𝑛 ‖∞,[−1,1] 6 𝐶𝑝!

(︁ 2
𝐴

𝑒𝜀
)︁𝑝√

𝜌
𝑛
𝑒𝑝𝜇(𝑝/ ln(1/

√
𝜌))
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It follows that the function series
∑︀

𝑓
(𝑝)
𝑛 are for sufficiently large values of 𝑝 nor-

mally convergent. Thence the function 𝑓 is of class 𝐶∞ on [−1, 1] and we have

‖𝑓 (𝑝)‖∞,[−1,1] 6
2𝐶

𝐴(1 − √
𝜌)

(︁ 2
𝐴

)︁𝑝

𝑝! exp
[︀
𝑝
(︀
𝜇

(︀
𝑝/ ln

(︀
1/

√
𝜌
)︀)︀

− 𝜇(𝑝)
)︀]︀

𝑒𝑝𝜇(𝑝)

6 𝐵𝑝+1𝑝𝑝𝑒𝑝𝜇(𝑝)

for some constant 𝐵 > 0. Thence we have 𝑓 ∈ 𝐶𝑀𝜇
([−1, 1]). �

5. Application: Alternative construction of Dyn’kin’s
pseudoanalytic extension for the Carleman class 𝐶𝑀𝜇([−1, 1])

Corollary 5.1. Let be 𝑓 ∈ 𝐶𝑀𝜇
([−1, 1]). There exists a function 𝐹 ∈ 𝐶∞(C)

with compact support such that

𝐹 |[−1,1] = 𝑓, |𝜕𝐹 (𝑧)| 6 𝐶1𝐻𝜇

[︂
𝐶2

𝜌(𝑧, [−1, 1])

]︂
, 𝑧 ∈ Cr [−1, 1]

where 𝐶1, 𝐶2 > 0 are constants.

Proof. According to the main result there exist constants 𝐴 ∈ ]0, 1[, 𝐶 > 0,
𝜌 ∈ ]0, 1[, and a sequence of rational functions (𝑓𝑛)𝑛∈N defined on some strip
𝐵 := {𝑧 ∈ C : | Im(𝑧)| 6 𝐴} such that

‖𝑓𝑛‖∞,[−1,1]𝜇,𝐴,𝑛
6 𝐶𝜌𝑛, 𝑛 ∈ N*,

+∞∑︁
𝑛=1

𝑓𝑛|[−1,1] = 𝑓.

It follows that ‖𝑓𝑛‖∞,[−1,1]𝛾𝜇,𝐴𝑒−𝜀,𝑛
6 𝐶𝜌𝑛, 𝑛 ∈ N*.

On the other hand, there exists, for each 𝑛 ∈ N*, a function 𝜃𝑛 : C → [0, 1]
of class 𝐶∞ on C (C is here identified with R2) and a family of positive constants
(𝐿𝛼)𝛼∈N2 [22] such that

𝜃𝑛(𝑧) = 1, 𝑧 ∈ [−1, 1]𝜇, 𝐴
8 ,𝑛

𝜃𝑛(𝑧) = 0, 𝑧 ∈ Cr [−1, 1]𝜇, 𝐴
2 ,𝑛

|𝐷𝛼𝜃𝑛(𝑧)| 6 𝐿𝛼𝑒|𝛼|𝜇(𝑛), 𝛼 ∈ N2, 𝑧 ∈ R2

where |𝛼| := 𝑝 + 𝑞 and 𝐷𝛼 := 𝜕𝑝+𝑞

𝜕𝑥𝑝𝜕𝑦𝑞 for 𝛼 = (𝑝, 𝑞).
We denote by 𝐹𝑛 the function defined by

𝐹𝑛(𝑧) = 𝜃𝑛(𝑧)𝑓𝑛(𝑧), 𝑧 ∈ [−1, 1]𝛾𝜇,𝐴,𝑛

𝐹𝑛(𝑧) = 0, 𝑧 ∈ Cr [−1, 1]𝛾𝜇,𝐴,𝑛

The function 𝐹𝑛 is of class 𝐶∞ on C and satisfies the condition

𝐹𝑛|[−1,1]
𝜇, 𝐴

8 ,𝑛
= 𝑓𝑛|[−1,1]

𝜇, 𝐴
8 ,𝑛

.

Since ‖𝐹𝑛‖∞,C 6 𝐶𝜌𝑛, 𝑛 ∈ N, it follows that the function series
∑︀

𝐹𝑛 is uniformly
convergent on C to a continuous function 𝐹 with compact support contained in
[−1, 1]𝐴. Furthermore it is clear that 𝐹 is an extension to C of 𝑓 .
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Let 𝛼 ∈ N2, 𝑛 ∈ N and 𝑧 ∈ C. If 𝑧 ∈ C r [−1, 1]𝜇, 𝐴
2 ,𝑛, then we have

𝐷𝛼𝐹𝑛(𝑧) = 0. But when 𝑧 ∈ [−1, 1]𝜇, 𝐴
8 ,𝑛 we can write, in view of Cauchy’s in-

equalities and inequality (4.4)

|𝐷𝛼𝐹𝑛(𝑧)| 6
∑︁
𝛽6𝛼

(𝛼
𝛽)|𝐷𝛽𝜃𝑛(𝑧)||𝐷𝛼−𝛽𝑓𝑛(𝑧)|

6
∑︁
𝛽6𝛼

(𝛼
𝛽)𝐿𝛽𝑒|𝛽|𝜇(𝑛)|𝐷𝛼−𝛽𝑓𝑛(𝑧)|

6
∑︁
𝛽6𝛼

(𝛼
𝛽)𝐿𝛽𝑒|𝛽|𝜀𝑒|𝛽|𝛾𝜇(𝑛)|𝑓 (|𝛼|−|𝛽|)

𝑛 (𝑧)|

6
∑︁
𝛽6𝛼

(𝛼
𝛽)𝐿𝛽𝑒|𝛽|𝜀𝑒|𝛽|𝛾𝜇(𝑛)𝐶(4/𝐴)|𝛼|−|𝛽|

· (|𝛼| − |𝛽|)!√𝜌
𝑛 exp

[︀
(|𝛼| − |𝛽|)𝛾𝜇(𝑛) − ln

(︀
1√

𝜌
)︀
𝑛

]︀
6

∑︁
𝛽6𝛼

(𝛼
𝛽)𝐿𝛽𝑒|𝛽|𝜀𝑒|𝛽|𝛾𝜇(𝑛)𝐶(4/𝐴)|𝛼|−|𝛽|

· (|𝛼| − |𝛽|)!√𝜌
𝑛 exp

[︁
sup
𝑚∈N

(︀
(|𝛼| − |𝛽|)𝛾𝜇(𝑚) − ln

(︀
1/

√
𝜌
)︀
𝑚

)︀]︁
6

√
𝜌

𝑛
∑︁
𝛽6𝛼

𝐶(𝛼
𝛽)𝑒|𝛽|𝜀𝐿𝛽(|𝛼| − |𝛽|)!(4/𝐴)|𝛼|−|𝛽|

· exp
[︁
(|𝛼| − |𝛽|)𝜇

(︁ (|𝛼| − |𝛽|)
ln(1/

√
𝜌)

)︁]︁
It follows that the function series

∑︀
𝐷𝛼𝐹𝑛(𝑧) is for all 𝛼 ∈ N2 normally convergent

on C. Thence the function 𝐹 =
∑︀+∞

𝑛=1 𝐹𝑛 is of class 𝐶∞ on C.
Let 𝑧 ∈ Cr [−1, 1]. Then we have 𝜕𝐹 (𝑧) =

∑︀+∞
𝑛=1 𝜕𝐹𝑛(𝑧). On the other hand,

we have

𝜕𝐹𝑛(𝑧) = 0 if 𝜌(𝑧, [−1, 1]) ∈
[︀
0, 𝐴

8 𝑒−𝜀𝑒−𝛾𝜇(𝑛)[︀ ∪
]︀
𝐴𝑒−𝜀𝑒−𝛾𝜇(𝑛), +∞

[︀
.

If 𝜌(𝑧, [−1, 1]) ∈
[︀

𝐴
8 𝑒−𝜇(𝑛), 𝐴𝑒−𝜇(𝑛)[︀, then, again by virtue of (4.4), we have

|𝜕𝐹𝑛(𝑧)| = |𝑓𝑛(𝑧)||𝜕𝜃𝑛(𝑧)|

6
𝐶

2 𝜌𝑛
(︁⃒⃒⃒𝜕𝜃𝑛

𝜕𝑥
(𝑧)

⃒⃒⃒
+

⃒⃒⃒𝜕𝜃𝑛

𝜕𝑦
(𝑧)

⃒⃒⃒)︁
6

𝐶

2 (𝐿(1,0) + 𝐿(0,1))𝑒𝜀𝑒𝛾𝜇(𝑛)− 1
2 ln( 1

𝜌 )𝑛√
𝜌

𝑛

6
𝐶

2 (𝐿(1,0) + 𝐿(0,1))𝑒𝜀𝑒𝜇(2/ ln(1/
√

𝜌))√𝜌
𝑛

Let us set

𝐴1 := 𝐶

2 (𝐿(1,0) + 𝐿(0,1))𝑒𝜀𝑒𝜇(2/ ln(1/
√

𝜌)), 𝜆 := − ln √
𝜌 > 0



HOLOMORPHIC SERIES EXPANSION OF FUNCTIONS OF CARLEMAN TYPE 261

Thence the following estimate holds

|𝜕𝐹 (𝑧)| 6
∑︁

𝐴
8 𝑒−𝜇(𝑛)6𝜌(𝑧,[−1,1])6𝐴𝑒−𝜇(𝑛)

𝐴1𝑒−𝜆𝑛

6 𝐴1
∑︁

𝐴
8𝜌(𝑧,[−1,1])6𝑒𝜇(𝑛)

𝑒−𝜆𝑛

6 𝐴1
∑︁

𝐴
8𝑒𝜀𝜌(𝑧,[−1,1])6𝑒𝛾𝜇(𝑛)

𝑒−𝜆𝑛

It follows that if 𝑧 is sufficiently close to [−1, 1], then the last estimate will become

|𝜕𝐹 (𝑧)| 6 𝐴1
∑︁

ℎ𝜇( 𝐴
8𝑒𝜀𝜌(𝑧,[−1,1]) )6𝑛

𝑒−𝜆𝑛

6
𝐴1

1 − 𝑒−𝜆
exp

[︁
− 𝜆ℎ𝜇

(︁ 𝐴

8𝑒𝜀𝜌(𝑧, [−1, 1])

)︁]︁
But we know that the function ℎ𝜇 is regularly varying. Thence there exists a
constant 𝐴2 > 0 such that we have ultimately

𝜆ℎ𝜇

(︁ 𝐴

8𝑒𝜀
𝑥

)︁
> ℎ𝜇(𝐴2𝑥)

Consequently we have for 𝑧 sufficiently close to [−1, 1]

|𝜕𝐹 (𝑧)| 6 𝐴1

1 − 𝑒− 𝜆
2

exp
[︁

− ℎ𝜇

(︁ 𝐴2

𝜌(𝑧, [−1, 1])

)︁]︁
Thence there exists a constant 𝐴3 > 0 such that

|𝜕𝐹 (𝑧)| 6 𝐴3𝐻𝜇

(︁ 𝐴2

𝜌(𝑧, [−1, 1])

)︁
, 𝑧 ∈ C

The proof of the corollary is complete. �
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