
Subread/Rsubread Users Guide

Subread v1.4.3/Rsubread v1.12.6

18 December 2013

Wei Shi and Yang Liao

Bioinformatics Division
The Walter and Eliza Hall Institute of Medical Research

The University of Melbourne
Melbourne, Australia

Copyright c© 2011 - 2013



Contents

1 Introduction 3

2 Preliminaries 5
2.1 Citation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Download and installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 SourceForge Subread package . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Bioconductor Rsubread package . . . . . . . . . . . . . . . . . . . . . . 6

2.3 How to get help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The seed-and-vote mapping paradigm 8
3.1 Seed-and-vote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Indel detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Detection of short indels . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Detection of long indels . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Detection of canonical exon-exon junctions . . . . . . . . . . . . . . . . . . . . 10
3.4 Fusion detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Read re-alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Recommended alignment setting . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Mapping reads generated by genomic DNA sequencing technologies 13
4.1 A quick start for using SourceForge Subread package . . . . . . . . . . . . . . . 13
4.2 A quick start for using Bioconductor Rsubread package . . . . . . . . . . . . . 14
4.3 Index building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Read mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Mapping quality scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Mapping reads generated by RNA sequencing technologies 20
5.1 A quick start for using SourceForge Subread package . . . . . . . . . . . . . . . 20
5.2 A quick start for using Bioconductor Rsubread package . . . . . . . . . . . . . 21
5.3 Local read alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Global read alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



6 Read summarization 23
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 featureCounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2.1 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.2 Annotation format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.3 Single and paired-end reads . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.4 Features and meta-features . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.5 Overlap of reads with features . . . . . . . . . . . . . . . . . . . . . . . 26
6.2.6 Multiple overlaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2.7 Program usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 A quick start for featureCounts in SourceForge Subread . . . . . . . . . . . . . 30
6.4 A quick start for featureCounts in Bioconductor Rsubread . . . . . . . . . . . . 31

7 SNP calling 32
7.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 exactSNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Case studies 35
8.1 A Bioconductor R pipeline for analyzing RNA-seq data . . . . . . . . . . . . . 35

2



Chapter 1

Introduction

The Subread/Rsubread packages comprise a suite of high-performance software programs for
processing next-generation sequencing data. Main programs included in the packages are
Subread aligner, Subjunc aligner, featureCounts read quantification program and exactSNP

program for discovering SNPs and indels. This document provides a detailed description to
the programs included in the packages.

Subread and Subjunc aligners adopt a mapping paradigm called “seed-and-vote” [1]. This
is an elegantly simple multi-seed strategy for mapping reads to a reference genome. This
strategy chooses the mapped genomic location for the read directly from the seeds. It uses a
relatively large number of short seeds (called subreads) extracted from each read and allows
all the seeds to vote on the optimal location. When the read length is <160 bp, overlapping
subreads are used. More conventional alignment algorithms are then used to fill in detailed
mismatch and indel information between the subreads that make up the winning voting block.
The strategy is fast because the overall genomic location has already been chosen before the
detailed alignment is done. It is sensitive because no individual subread is required to map
exactly, nor are individual subreads constrained to map close by other subreads. It is accurate
because the final location must be supported by several different subreads. The strategy
extends easily to find exon junctions, by locating reads that contain sets of subreads mapping
to different exons of the same gene. It scales up efficiently for longer reads.

Subread is a general-purpose read aligner. It can be used to align reads generated from
both genomic DNA sequencing and RNA sequencing technologies. It been successfully used
in a number of high-profile studies [2, 3, 4, 5, 6]. Subjunc is specifically designed to detect
exon-exon junctions and to perform full alignments for RNA-seq reads. Note that Subread

performs local alignments for RNA-seq reads. Both Subread and Subjunc detect insertions,
deletions, fusions and they perform read alignments after detecting these genomic mutation
events. Subjunc also perform read re-alignments after detecting the exon-exon junctions.

The featureCounts program is designed to assign mapped reads or fragments (paired-end
data) to genomic features such as genes, exons and promoters. It is a light-weight read counting
program suitable for count both gDNA-seq and RNA-seq reads for genomic features[7]. Also
included in this software suite is a very efficient SNP caller – exactSNP. exactSNP measures
local background noise for each candidate SNP and then uses that information to accurately
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call SNPs.
These software programs support a variety of sequencing platforms including Illumina

GA/HiSeq, ABI SOLiD, Life Science 454, Helicos Heliscope and Ion Torrent. They are released
in two packages – SourceForge Subread package and Bioconductor Rsubread package.
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Chapter 2

Preliminaries

2.1 Citation

If you use Subread or Subjunc aligners, please cite:

Liao Y, Smyth GK and Shi W. The Subread aligner: fast, accurate and scalable
read mapping by seed-and-vote. Nucleic Acids Research, 41(10):e108, 2013
http://nar.oxfordjournals.org/content/early/2013/04/03/nar.gkt214.abstract

If you use featureCounts, please cite:

Liao Y, Smyth GK and Shi W. featureCounts: an efficient general-purpose pro-
gram for assigning sequence reads to genomic features. Bioinformatics, accepted
on Nov 7, 2013, doi: 10.1093/bioinformatics/btt656
http://bioinformatics.oxfordjournals.org/cgi/reprint/btt656?ijkey=ZzPz96t2lqzAH6F&keytype=

ref

2.2 Download and installation

2.2.1 SourceForge Subread package

Installation from a binary distribution

This is the easiest way to install the Subread package onto your computer. Download a
Subread binary distribution that suits your oprating system, from the SourceForge website
http://subread.sourceforge.net. The operating systems currently being supported in-
clude multiple variants of Linux (Debian, Ubuntu, Fedora and Cent OS) and Mac OS X. Both
64-bit and 32-bit machines are supported. The executables can be found in the ‘bin’ diretory
of the binary package.
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To install Subread package for other operating systems such as FreeBSD and Solaris, you
will have to install them for the source.

Installation from the source package

Download Subread source package from the SourceForge website http://subread.sourceforge.
net to your local directory. Type the following command to uncompress it:

tar zxvf subread-1.x.x.tar.gz

Enter the src subdirectory under the home directory of this package and then issue the
following command to install it on a Linux operating system:

make -f Makefile.Linux

To install it on a Mac OS X operating system, issue the following command:

make -f Makefile.MacOS

To install it on a FreeBSD operating system, issue the following command:

make -f Makefile.FreeBSD

To install it on Oracle Solaris or OpenSolaris computer operating systems, issue the fol-
lowing command:

make -f Makefile.SunOS

A new subdirectory called bin will be created under the home directory of the software
package, and the executables generated from the compilation will be saved to that subdirec-
tory. To enable easy access to these executables, you may copy them to a system directory
such as /usr/bin or add the path to them to your search path (your search path is usually
specified in the environment variable ‘PATH’).

2.2.2 Bioconductor Rsubread package

You have to get R installed on my computer to install this package. Lauch an R session and
issue the following command to install it:

source("http://bioconductor.org/biocLite.R")
biocLite("Rsubread")

Alternatively, you may download the Rsubread source package directly from http://

bioconductor.org/packages/release/bioc/html/Rsubread.html and install it to your
R from the source.
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2.3 How to get help

Bioconductor mailing list (http://bioconductor.org/) and SeqAnswer forum (http://www.
seqanswers.com) are the best places to get help and to report bugs. Alternatively, you may
contact Wei Shi (shi at wehi dot edu dot au) directly.
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Chapter 3

The seed-and-vote mapping paradigm

3.1 Seed-and-vote

We have developed a new read mapping paradigm called “seed-and-vote” for efficient, accurate
and scalable read mapping [1]. The seed-and-vote strategy uses a number of overlapping seeds
from each read, called subreads. Instead of trying to pick the best seed, the strategy allows
all the seeds to vote on the optimal location for the read. The algorithm then uses more
conventional alignment algorithms to fill in detailed mismatch and indel information between
the subreads that make up the winning voting block. The following figure illustrates the
proposed seed-and-vote mapping approach with an toy example.

Two aligners have been developed under the seed-and-vote paradigm, including Subread

and Subjunc. Subread is a general-purpose read aligner, which can be used to map both
genomic DNA-seq and RNA-seq read data. Its running time is determined by the number of
subreads extracted from each read, not by the read length. Thus it has an excellent maping
scalability, ie. its running time has only very modest increase with the increase of read length.
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Subread uses the largest mappable region in the read to determine its mapping location,
therefore it automatically determines whether a global alignment or a local alignment should
be found for the read. For the exon-spanning reads in a RNA-seq dataset, Subread performs
local alignments for them to find the target regions in the reference genome that have the
largest overlap with them. Note that Subread does not perform global alignments for the
exon-spanning reads and it soft clips those read bases which could not be mapped. However,
the Subread mapping result is sufficient for carrying out the gene-level expression analysis
using RNA-seq data, because the mapped read bases can be reliably used to assign reads,
including both exonic reads and exon-spanning reads, to genes.

To get the full alignments for exon-spanning RNA-seq reads, the Subjunc aligner can be
used. Subjunc is designd to discover exon-exon junctions from using RNA-seq data, but it
performs full alignments for all the reads at the same time. The Subjunc mapping results
should be used for detecting genomic variations in RNA-seq data, allele-specific expression
analysis and exon-level gene expression analysis. The Section 3.3 describes how exon-exon
junctions are discovered and how exon-spanning reads are aligned using the seed-and-vote
paradigm.

3.2 Indel detection

3.2.1 Detection of short indels

The seed-and-vote paradigm is very powerful in detecting indels (insertions and deletions).
The figure below shows how we use the subreads to confidently detect short indels. When
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there is an indel existing in a read, mapping locations of subreads extracted after the indel will
be shifted to the left (insertion) or to the right (deletion), relative to the mapping locations
of subreads at the left side of the indel. Therefore, indels in the reads can be readily detected
by examining the difference in mapping locations of the extracted subreads. Moreover, the
number of bases by which the mapping location of subreads are shifted gives the precise length
of the indel. Since no mismatches are allowed in the mapping of the subreads, the indels can
be detected with a very high accuracy.

3.2.2 Detection of long indels

Detection of long indels is performed by using read assembly. When the specified indel length
(‘-I’ option in SourceForge C or ‘indels’ paradigm in Rsubread) is greater than 16, the Subread

and Subjunc will automatically start the read assembly procedure to identify indels of up to
200bp long.

3.3 Detection of canonical exon-exon junctions

The seed-and-vote paradigm is also very useful in detecting exon-exon junctions, because the
short subreads extracted across the entire read can be used to detect short exons in a sensitive
and accurate way. The figure below shows the schematic of detecting exon-exon junctions and
mapping RNA-seq reads by Subjunc, which uses this paradigm.

The first scan detects all possible exon-exon junctions using the mapping locations of
the subreads extracted from each read. Matched donor (‘GT’) and receptor (‘AG’) sites are
required for calling junctions. Exons as short as 16bp can be detected in this step. The second
scan verifies the putative exon-exon junctions discovered from the first scan by performing
re-alignments for the junction reads. The output from Subjunc includes the list of verified
junctions and also the mapping results for all the reads.
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3.4 Fusion detection

Subjunc can detect genomic fusion events such as chimera in both RNA sequencing and ge-
nomic DNA sequencing data. It performs fusion detection in a manner similar to what it does
for exon-exon junction detection, but it allows the same read to be splitted across different
chromosomes. It also allows a read to be splitted across different strands on the same chromo-
some. It does not require donor/receptor sites when calling fusions. Non-canonical exon-exon
junctions, which have donor/receptor sites other than GT/AG, may also be reported when
subjunc tries to detect fusions.

For any read that maps to two or more chromosomes, maps to different strands of the
same chromosome or spans a regions wider than 227 bases, Subjunc uses optional fields in the
SAM/BAM output file to report the secondary alignments of the read. The primary alignment
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of the read is saved in the main fields of the same record. The following tags are used for
secondary alignments in the optional fields: CC(chromosome name), CP(mapping position),
CG(CIGAR string) and CT(strand). Note that a fusion or junction read is always saved in a
single record in SAM/BAM output.

3.5 Read re-alignments

Both Subread and Subjunc aligners re-align the reads after identifying indels, fusions and
exon-exon junctions (subjunc only) from the data. They make use of the flanking window
approach to identify indels, fusions and exon junctions. This is a highly accurate approach
since it requires the identified indels, fusions or exon junctions to be flanked by perfectly
matched subreads (16mers) at both of their sides. These discovered indels, fusions and exon
junctions are then used for the re-alignments of all the reads. This approach is very effective
in mapping the reads that contain indels, fusions or exon junctions at locations close to the
ends of reads.

3.6 Recommended alignment setting

It is recommended to turn on -u option (reporting uniquely mapped reads only) and also -H

option (breaking ties using Hamming distance when there is more than one best mapping lo-
cation), when running Subread and Subjunc aligners. This should give the most accurate map-
ping results with little or no cost to the mapping percentage. This is the default setting used in
align and subjunc functions in Rsubread package (unique=TRUE and tieBreakHamming=TRUE).
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Chapter 4

Mapping reads generated by genomic
DNA sequencing technologies

4.1 A quick start for using SourceForge Subread package

An index must be built for the reference first and then the read mapping can be performed.

Step 1: Building an index

Build a base-space index (default). You can provide a list of FASTA files or a single FASTA
file including all the reference sequences.

subread-buildindex -o my index chr1.fa chr2.fa ...

Step 2: Aligning the reads

Map single-end reads using 5 threads:
subread-align -T 5 -i my index -r reads.txt -o subread results.sam

Detect indels of up to 16bp:
subread-align -I 16 -i my index -r reads.txt -o subread results.sam

Report up to three best mapping locations:
subread-align -B 3 -i my index -r reads.txt -o subread results.sam

Report uniquely mapped reads only:
subread-align -u -i my index -r reads.txt -o subread results.sam

Map paired-end reads:
subread-align -d 50 -D 600 -i my index -r reads1.txt -R reads2.txt

-o subread results.sam
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4.2 A quick start for using Bioconductor Rsubread pack-

age

An index must be built for the reference first and then the read mapping can be performed.

Step 1: Building an index

To build the index, you must provide a single FASTA file (eg. “genome.fa”) which includes
all the reference sequences.

library(Rsubread)
buildindex(basename="my_index",reference="genome.fa")

Step 2: Aligning the reads

Map single-end reads using 5 threads:

align(index="my_index",readfile1="reads.txt",output_file="rsubread.sam",nthreads=5)

Detect indels of up to 16bp:

align(index="my_index",readfile1="reads.txt",output_file="rsubread.sam",indels=16)

Report up to three best mapping locations:

align(index="my_index",readfile1="reads.txt",output_file="rsubread.sam",nBestLocations=3)

Report uniquely mapped reads only:

align(index="my_index",readfile1="reads.txt",output_file="rsubread.sam",unique=TRUE)

Map paired-end reads:

align(index="my_index",readfile1="reads1.txt",readfile2="reads2.txt",output_file="rsubread.sam",
minFragLength=50,maxFragLength=600)

4.3 Index building

The subread-buildindex (buildindex function in Rsubread) program builds an base-space or
color-space index using the reference sequences. The reference sequences should be in FASTA
format (the header line for each chromosomal sequence starts with “>”).

This program extracts all the 16 mer sequences from the reference genome at a 2bp in-
terval and then uses them to build a hash table. Keys in the hash table are unique 16 mers
and values are their chromosomal locations. Table 1 describes the arguments used by the
subread-buildindex program.
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Table 1: Arguments used by the subread-buildindex program (buildindex function in
Rsubread). Arguments in parenthesis in the first column are used by buildindex.

Arguments Description
-o < basename >
(basename)

Specify the base name of the index to be created.

-f < int >
(TH subread)

Specify the threshold for removing uninformative subreads (highly
repetitive 16mers). Subreads will be excluded from the index if
they occur more than threshold number of times in the reference
genome. Default value is 24.

-M < int >
(memory)

Specify the Size of requested memory(RAM) in megabytes, 8000MB
by default. With the default value, the index built for a mammalian
genome (eg. human or mouse genome) will be saved into one block,
enabling the fastest mapping speed to be achieved. The amount of
memory used is ∼ 7600MB for mouse or human genome (other
species have a much smaller memory footprint), when performing
read mapping. Using less memory will increase read mapping time.

-c
(colorspace)

Build a color-space index.

chr1.fa, chr2.fa, ...
(reference)

Give names of chromosome files. Note that in Rsubread, only a sin-
gle FASTA file including all reference sequences should be provided.

4.4 Read mapping

The subread-align program (align in Rsubread) extracts a number of subreads from each
read and then uses these subreads to vote for the mapping location of the read. It uses the
the “seed-and-vote” paradigm for read mapping. subread-align program automatically de-
termines if a read should be globally aligned or locally aligned, making it particularly poweful
for mapping RNA-seq reads. Table 2 describes the arguments used by the subread-align

program (and also the subjunc program). These arguments are used by the read mapping
programs included in both SourceForge Subread package and Bioconductor Rsubread pack-
age, although argument names are different in these two packages (arguments names used by
Bioconductor Rsubread are included in parenthesis).
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Table 2: arguments used by the subread-align/subjunc programs included in the Source-
Forge Subread package. Arguments in parenthesis in the first column are the equivalent
arguments used in Bioconductor Rsubread package.
Arguments Description
-i < index >
(index)

Specify the base name of the index.

-r < input >
(readfile1)

Give the name of input file(s) (multiple files are allowed to be pro-
vided to align and subjunc functions in Rsubread). For paired-end
read data, this gives the first read file and the other read file should
be provided via the -R option. By default, format of the input
file(s) is FASTQ (including FASTA). Other allowed formats include
gzipped FASTQ (FASTA), SAM and BAM. See options below for
how to specify these formats.

-R < input >
(readfile2)

Provide the name of the second reads file from paired-end data.
The program will then be switched to paired-end read mapping
mode.

-o < output >
(output file)

Give the name of the output file (SAM format).

−−gzFASTQinput
(input format=

"gzFASTQ")

specify that the input read data are in gzipped FASTQ or gzipped
FASTA format.

−−SAMinput
(input format="SAM")

specify that the input read data are in SAM format.

−−BAMinput
(input format="BAM")

specify that the input read data are in BAM format.

−−BAMoutput
(output format)

specify that mapping results are saved into a BAM format file.

-n < int >
(nsubreads)

Specify the number of subreads extracted from each read, 10 by
default.

-m < int >
(TH1)

Specify the consensus threshold, which is the minimal number of
consensus subreads required for reporting a hit. The consensus
subreads are those subreads which vote for the same location in the
reference genome for the read. If pair-end read data are provided,
at least one of the two reads from the same pair must satisfy this
criteria. 3 by default.

-p < int >
(TH2)

Specify the minimum number of consensus subreads both reads
from the same pair must have. This argument is only applicable
for paired-end read data. The value of this argument should not be
greater than that of ‘-m’ option, so as to rescue those read pairs in
which one read has a high mapping quality but the other does not.
1 by default.
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-d < int >
(minFragLength)

Specify the minimum fragment/template length, 50 by default.
Note that if the two reads from the same pair do not satisfy the
fragment length criteria, they will be mapped individually as if they
were single-end reads.

-D < int >
(maxFragLength)

Specify the maximum fragment/template length, 600 by default.

-S < ff : fr : rf >
(PE orientation)

Specify the orientation of the two reads from the same pair. It has
three possible values including ‘fr’, ‘ff’ and ‘’rf. Letter ‘f’ denotes
the forward strand and letter ‘r’ the reverse strand. ‘fr’ by default
(ie. the first read in the pair is on the forward strand and the second
read on the reverse strand).

-I < int >
(indels)

Specify the number of INDEL bases allowed in the mapping. 5 by
default. Indels of up to 200bp long can be detected.

-u
(unique)

Output the uniquely mapped reads only.

-Q
(codetieBreakQS)

Use mapping quality scores to break ties when more than one best
mapping location is found.

-H
(tieBreakHamming)

Use Hamming distance to break ties when more than one best map-
ping location is found.

∗ -B < int >
(nBestLocations)

Specify the maximal number of equally-best mapping locations al-
lowed to be reported for a read. Its value has to be within the
range of 1 to 16. The default value is 1. The number of equally-
best locations reported for a read will be less than or equal to the
specified value. For example, if a read has two equally-best map-
ping locations, but the ‘B’ was set to 5, then only two locations will
be reported for this read.

-P < 3 : 6 >
(phredOffset)

Specify the format of Phred scores used in the input data, ’3’ for
phred+33 and ’6’ for phred+64. ’3’ by default. For align function
in Rsubread, the possible values are ‘33’ (for phred+33) and ‘64’
(for phred+64). ‘33’ by default.

-T < int >
(nthreads)

Specify the number of threads/CPUs used for mapping. 1 by de-
fault.

-b
(color2base)

Output base-space reads instead of color-space reads in the map-
ping output. Note that the mapping itself will still be performed
at color-space. This option is only applicable for color-space read
mapping.

∗ -G < int >
(DP GapOpenPenalty)

Specify the penalty for opening a gap when applying the Smith-
Waterman dynamic programming to detecting indels. -2 by defaut.

∗ -E < int >
(DP GapExtPenalty)

Specify the penalty for extending the gap when performing the
Smith-Waterman dynamic programming. 0 by defaut.

∗ -X < int >
(DP MismatchPenalty)

Specify the penalty for mismatches when performing the Smith-
Waterman dynamic programming. 0 by defaut.
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∗ -Y < int >
(DP MatchScore)

Specify the score for the matched base when performing the Smith-
Waterman dynamic programming. 2 by defaut.

−−trim5 < int >
(nTrim5)

trim off < int > number of bases from 5’ end of each read. 0 by
default.

−−trim3 < int >
(nTrim3)

trim off < int > number of bases from 3’ end of each read. 0 by
default.

−−rg-id < string >
(readGroupID)

specify the read group ID. If specified, the read group ID will be
added to the read group header field and also to each read in the
mapping output.

−−rg < string >
(readGroup)

add a < tag : value > to the read group (RG) header in the
mapping output.

∗∗−−dnaseq
(DNAseq)

Specify that the input read data are genomic DNA sequencing data.
This option should only be used with subjunc. When specified,
subjunc will perform read alignments and also detect fusion events
such as chimeras. When a read is mapped to more than one chro-
mosome, its secondary alignments will be saved to the following
optional fields along with the main fields of the same record in
the SAM/BAM output: CC(Chr), CP(Position), CG(CIGAR) and
CT(strand).

∗∗−−allJunctions
(reportAllJunctions)

This option should only be used with subjunc for the mapping of
RNA-seq data. If specified, the subjunc will output non-canonical
exon-exon junctions and fusions (eg. chimeras), in addition to the
canonical exon-exon junctions. Chimeric reads are reported in the
same format as that in ‘−−dnaseq’ option.

∗−−reportFusions
(reportFusions)

This option should only be used with subread-align for the map-
ping of genomic DNA-seq data. If specified, subread-align will
report discovered fusion events such as chimeras. Fusions are re-
ported in the same format as that used in ‘−−dnaseq’ option.

-v Output version of the program.

∗ Arguments used by subread-align only.
∗∗ Arguments used by subjunc only.
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4.5 Mapping quality scores

Both Subread and Subjunc aligners output a mapping quality score for each mapped read,
defined by

MQS = 100 +
100

l

 ∑
i∈bm

(1− pi) −
∑

i∈bmm

(1− pi)


where l is the read length, pi is the base-calling p-value for the ith base in the read, bm is the
set of locations of matched bases, and bmm is the set of locations of mismatched bases.

Base-calling p values can be readily computed from the base quality scores. High quality
bases have low base-calling p values. Read bases which were found to be insertions are treated
as matched bases in the MQS calculation. The MQS is a read-length normalized value, which
is in the range of 0 to 200. If a read can be best mapped to more than one location, its MQS
will be divided by the number of such locations.
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Chapter 5

Mapping reads generated by RNA
sequencing technologies

5.1 A quick start for using SourceForge Subread package

An index must be built for the reference first and then the read mapping and/or junction
detection can be carried out.

Step 1: Building an index

The following command can be used to build a base-space index. You can provide a list of
FASTA files or a single FASTA file including all the reference sequences.

subread-buildindex -o my index chr1.fa chr2.fa ...

For more details about index building, see Section 4.3.

Step 2: Aligning the reads

Subread

For the purpose of differential expression analysis (ie. discovering differentially expressed
genes), we recommend you to use the Subread aligner. Subread carries out local alignments
for RNA-seq reads. The commands used by Subread to align RNA-seq reads are the same as
those used to align gDNA-seq reads. Below is an example of using Subread to map single-end
RNA-seq reads.

subread-align -i my index -r rnaseq-reads.txt -o subread results.sam

Another RNA-seq aligner included in this package is the Subjunc aligner. Subjunc not only
performs read alignments but also detects exon-exon junctions. The main difference between
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Subread and Subjunc is that Subread does not attempt to detect exon-exon junctions in the
RNA-seq reads. For the alignments of the exon-spanning reads, Subread just uses the largest
mappable regions in the reads to find their mapping locations. This makes Subread more
computationally efficient. The largest mappable regions can then be used to reliably assign
the reads to their target genes by using a read summarization program (eg. featureCounts, see
Section 6.2), and differential expression analysis can be readily performed based on the read
counts yielded from read summarization. Therefore, Subread is sufficient for read mapping
if the purpose of the RNA-seq analysis is to perform a differential expression analysis. Also,
Subread could report more mapped reads than Subjunc. For example, the exon-spanning reads
that are not aligned by Subjunc due to the lack of GT/AG splicing signals (this is the only
donor/receptor site accepted by Subjunc) could be aligned by Subread, as long as they have a
good match with the target region.

Subjunc

For other purposes of the RNA-seq data anlayses such as exon-exon junction detection
and genomic mutation detection, in which reads need to be fully aligned (especially the exon-
spanning reads), Subjunc aligner should be used. Below is an example command of using
Subjunc to perform global alignments for paired-end RNA-seq reads. Note that there are two
files included in the output: one containing the discovered exon-exon junctions (BED format)
and the other containing the mapping results for reads (SAM or BAM format).

subjunc -i my index -r rnaseq-reads1.txt -R rnaseq-reads2.txt -o subjunc result

5.2 A quick start for using Bioconductor Rsubread pack-

age

An index must be built for the reference first and then the read mapping can be performed.

Step 1: Building an index

To build the index, you must provide a single FASTA file (eg. “genome.fa”) which includes
all the reference sequences.

library(Rsubread)
buildindex(basename="my_index",reference="genome.fa")

Step 2: Aligning the reads

Please refer to Section 5.1 for difference between Subread and Subjunc in mapping RNA-
seq data. Below is an example for mapping a single-end RNA-seq dataset using Subread.
Useful information about align function can be found in its help page (type ?align in your
R prompt).
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align(index="my_index",readfile1="rnaseq-reads.txt",output_file="subread_results.sam")

Below is an example for mapping a single-end RNA-seq dataset using Subjunc. Useful
information about subjunc function can be found in its help page (type ?subjunc in your R
prompt).

subjunc(index="my_index",readfile1="rnaseq-reads.txt",output_file="subjunc_results.sam")

5.3 Local read alignment

The Subread and Subjunc can both be used to map RNA-seq reads to the reference genome.
If the goal of the RNA-seq data is to perform expression analysis, eg. finding genes expressing
differentially between different conditions, then Subread is recommended. Subread performs
fast local alignments for reads and reports the mapping locations that have the largest overlap
with the reads. These reads can then be assigned to genes for expression analysis. For this
type of analysis, global alignments for the exon-spanning reads are not required because local
aligments are sufficient to get reads to be accurately assigned to genes.

However, for other types of RNA-seq data analyses such as exon-exon junction discovery,
genomic mutation detection and allele-specific gene expression analysis, global alignments are
required. The next section describes the Subjunc aligner, which performs global aligments for
RNA-seq reads.

5.4 Global read alignment

Subjunc aligns each exon-spanning read by firstly using a large number of subreads extracted
from the read to identify multiple target regions matching the selected subreads, and then
using the splicing signals (donor and receptor sites) to precisely determine the mapping loca-
tions of the read bases. It also includes a verification step to compare the quality of mapping
reads as exon-spanning reads with the quality of mapping reads as exonic reads to finally
decide how to best map the reads. Reads may be re-aligned if required.

Output of Subjunc aligner includes a list of discovered exon-exon junction locations and
also the complete alignment results for the reads. Table 2 describes the arguments used by
the Subjunc program.
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Chapter 6

Read summarization

6.1 Introduction

Sequencing reads often need to be assigned to genomic features of interest after they are
mapped to the reference genome. This process is often called read summarization or read
quantification. Read summarization is required by a number of downstream analyses such as
gene expression analysis and histone modification analysis. The output of read summarization
is a count table, in which the number of reads assigned to each feature in each library is
recorded.

A particular challenge to the read summarization is how to deal with those reads that
overlap more than one feature (eg. an exon) or meta-feature (eg. a gene). Care must be
taken to ensure that such reads are not over-counted or under-counted. Here we describe
the featureCounts program, an efficient and accurate read quantifier. featureCounts has the
following features:

• It carries out precise and accurate read assignments by taking care of indels, junctions
and fusions in the reads.

• It takes less than 4 minutes to summarize 20 million pairs of reads to 26k RefSeq genes
using one thread, and uses <20MB of memory (you can run it on a Mac laptop).

• It supports multi-threaded running, making it extremely fast for summarizing large
datasets.

• It supports GTF/SAF format annotation and SAM/BAM read data.

• It supports strand-specific read summarization.

• It can perform read summarization at both feature level (eg. exon level) and meta-
feature level (eg. gene level).

• It allows users to specify whether reads overlapping with more than one feature should
be counted or not.
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• It gives users full control on the summarization of paired-end reads, including allowing
them to check if both ends are mapped and/or if the fragment length falls within the
specified range.

• It can discriminate the features that were overlapped by both ends of the fragment from
the features that were overlapped by only one end of the same fragment to get more
accurate read assignments.

• It allows users to specify whether chimeric fragments should be counted.

• It automatically detects the read input format (SAM or BAM).

• It automatically re-order paired-end reads if reads belonging to the same pair are not
adjacent to each other in input read files.

6.2 featureCounts

6.2.1 Input data

The data input to featureCounts consists of (i) one or more files of aligned reads in either
SAM or BAM format and (ii) a list of genomic features in either Gene Transfer Format
(GTF) or General Feature Format (GFF) or Simplified Annotation Format (SAF). The read
input format (SAM or BAM) is automatically detected and so does not need to be specified
by the user. For paired reads, featureCounts also automatically sorts reads by name if paired
reads are not in consecutive positions in the SAM or BAM file. Both the read alignment
and the feature annotation should correspond to the same reference genome, which is a set of
reference sequences representing chromosomes or contigs. For each read, the SAM file gives
the name of the reference chromosome or contig to which the read mapped, the start position
of the read on the chromosome or contig/scaffold, and the so-called CIGAR string giving the
detailed alignment information including insertions and deletions and so on relative to the
start position.

The genomic features can be specified in either GTF/GFF or SAF format. The SAF format
is the simpler and includes only five required columns for each feature (see next section). In
either format, the feature identifiers are assumed to be unique, in accordance with commonly
used Gene Transfer Format (GTF) refinement of GFF.

featureCounts supports strand-specific read counting if strand-specific information is pro-
vided. Read mapping results usually include mapping quality scores for mapped reads. Users
can optionally specify a minimum mapping quality score that the assigned reads must satisfy.

6.2.2 Annotation format

The genomic features can be specified in either GTF/GFF or SAF format. A definition of the
GTF format can be found at UCSC website (http://genome.ucsc.edu/FAQ/FAQformat.
html#format4). The SAF format includes five required columns for each feature: feature
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identifier, chromosome name, start position, end position and strand. These five columns
provide the minimal sufficient information for read quantification purposes. Extra annotation
data are allowed to be added from the sixth column.

A SAF-format annotation file should be a tab-delimited text file. It should also include a
header line. An example of a SAF annotation is shown as below:

GeneID Chr Start End Strand

497097 chr1 3204563 3207049 -

497097 chr1 3411783 3411982 -

497097 chr1 3660633 3661579 -

100503874 chr1 3637390 3640590 -

100503874 chr1 3648928 3648985 -

100038431 chr1 3670236 3671869 -

...

GeneID column includes gene identifiers that can be numbers or character strings. Chro-
mosomal names included in the Chr column must match the chromosomal names of reference
sequences to which the reads were aligned.

6.2.3 Single and paired-end reads

Reads may be paired or unpaired. If paired reads are used, then each pair of reads defines
a DNA or RNA fragment bookended by the two reads. In this case, featureCounts can be
instructed to count fragments rather than reads. featureCounts automatically sorts reads by
name if paired reads are not in consecutive positions in the SAM or BAM file. Users do not
need sort their paired reads before providing them to featureCounts.

6.2.4 Features and meta-features

featureCounts is a general-purpose read summarization function, which assigns mapped reads
(RNA-seq reads or genomic DNA-seq reads) to genomic features or meta-features. Each
feature is an interval (range of positions) on one of the reference sequences. We define a meta-
feature to be a set of features representing a biological construct of interest. For example,
features often correspond to exons and meta-features to genes. Features sharing the same
feature identifier in the GTF or SAF annotation are taken to belong to the same meta-feature.
featureCounts can summarize reads at either the feature or meta-feature levels.

We recommend to use unique gene identifiers, such as NCBI Entrez gene identifiers, to
cluster features into meta-features. Gene names are not recommended to use for this purpose
because different genes may have the same names. Unique gene identifiers were often included
in many publicly available GTF annotations which can be readily used for summarization.
The Bioconductor Rsubread package also includes NCBI RefSeq annotations for human and
mice. Entrez gene identifiers are used in these annotations.
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6.2.5 Overlap of reads with features

featureCounts preforms precise read assignment by comparing mapping location of every base
in the read or fragment with the genomic region spanned by each feature. It takes account of
any gaps (insertions, deletions, exon-exon junctions or fusions) that are found in the read. It
calls a hit if any overlap (1bp or more) is found between the read or fragment and a feature.
A hit is called for a meta-feature if the read or fragment overlaps any component feature of
the meta-feature.

6.2.6 Multiple overlaps

A multi-overlap read or fragment is one that overlaps more than one feature, or more than
one meta-feature when summarizing at the meta-feature level. featureCounts provides users
with the option to either exclude multi-overlap reads or to count them for each feature that
is overlapped. The decision whether or not to counting these reads is often determined by the
experiment type. We recommend that reads or fragments overlapping more than one gene
are not counted for RNA-seq experiments, because any single fragment must originate from
only one of the target genes but the identity of the true target gene cannot be confidently
determined. On the other hand, we recommend that multi-overlap reads or fragments are
counted for most ChIP-seq experiments because epigenetic modifications inferred from these
reads may regulate the biological functions of all their overlapping genes.

Note that, when counting at the meta-feature level, reads that overlap multiple features
of the same meta-feature are always counted exactly once for that meta-feature, provided
there is no overlap with any other meta-feature. For example, an exon-spanning read will be
counted only once for the corresponding gene even if it overlaps with more than one exon.

6.2.7 Program usage

Table 3 describes the parameters used by the featureCounts program.
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Table 3: arguments used by the featureCounts program included in the SourceForge Sub-
read package. Arguments included in parenthesis are the equivalent parameters used by
featureCounts function in Bioconductor Rsubread package.
Arguments Description
input files
(files)

Give the names of input read files that include the read map-
ping results. The program automatically detects the file for-
mat (SAM or BAM). Multiple files can be provided at the
same time.

-a < input >
(annot.ext, annot.inbuilt)

Give the name of an annotation file.

-o < input > Give the name of the output file. The output file contains
the number of reads assigned to each meta-feature (or each
feature if -f is specified). Note that the featureCounts function
in Rsubread does not use this parameter. It returns a list

object including read summarization results and other data.
-A
(chrAliases)

Give the name of a file that contains aliases of chromosome
names. The file should be a comma delimited text file that
includes two columns. The first column gives the chromosome
names used in the annotation and the second column gives the
chromosome names used by reads. This file should not contain
header lines. Names included in this file are case sensitive.

-F
(isGTFAnnotationFile)

Specify the format of the annotation file. Acceptable formats
include ‘GTF’ and ‘SAF’ (see Section 6.2.2 for details). The
C version of featureCounts program uses a GTF format an-
notation by default, but the R version uses a SAF format
annotation by default. The R version also includes in-built
annotations.

-t < input >
(GTF.featureType)

Specify the feature type. Only rows which have the matched
feature type in the provided GTF annotation file will be in-
cluded for read counting. ‘exon’ by default.

-g < input >
(GTF.attrType)

Specify the attribute type used to group features (eg. exons)
into meta-features (eg. genes), when GTF annotation is pro-
vided. ‘gene id’ by default. This attribute type is usually the
gene identifier. This argument is useful for the meta-feature
level summarization.

-f
(useMetaFeatures)

If specified, read summarization will be performed at feature
level (eg. exon level). Otherwise, it is performed at meta-
feature level (eg. gene level).

27



-O
(allowMultiOverlap)

If specified, reads (or fragments if -p is specified) will be al-
lowed to be assigned to more than one matched meta-feature
(or feature if -f is specified). Reads/fragments overlapping
with more than one meta-feature/feature will be counted more
than once. Note that when performing meta-feature level
summarization, a read (or fragment) will still be counted once
if it overlaps with multiple features belonging to the same
meta-feature but does not overlap with other meta-features.

-s < int >
(isStrandSpecific)

Indicate if strand-specific read counting should be performed.
It has three possible values: 0 (unstranded), 1 (stranded) and
2 (reversely stranded). 0 by default. For paired-end reads,
strand of the first read is taken as the strand of the whole
fragment and FLAG field of the current read is used to tell if
it is the first read in the fragment.

-M If specified, multi-mapping reads/fragments will be counted
(ie. a multi-mapping read will be counted up to N times if
it has N reported mapping locations). The program uses the
‘NH’ tag to find multi-mapping reads.

-Q < int >
(minMQS)

The minimum mapping quality score a read must satisfy in
order to be counted. For paired-end reads, at least one end
should satisfy this criteria. 0 by default.

-T < int >
(nthreads)

Number of the threads. 1 by default.

-R Output read counting result for each read/fragment. For each
input read file, read counting results for reads/fragments will
be saved to a tab-delimited file that contains four columns
including read name, status(assigned or the reason if not as-
signed), name of target feature/meta-feature and number of
hits if the read/fragment is counted multiple times. Name of
the file is the same as name of the input read file except a
suffix ‘.featureCounts’ is added.

-p
(isPairedEnd)

If specified, fragments (or templates) will be counted instead
of reads. This option is only applicable for paired-end reads.

-P
(checkFragLength)

If specified, the fragment length will be checked when assign-
ing fragments to meta-features or features. This option should
be used together with -p (or isPairedEnd in Rsubread feature-
Counts). The fragment length thresholds should be specified
using -d and -D options.

-d < int >
(minFragLength)

Minimum fragment/template length, 50 by default.

-D < int >
(maxFragLength)

Maximum fragment/template length, 600 by default.

28



-B
(requireBothEndsMapped)

If specified, only fragments that have both ends successfully
aligned will be considered for summarization. This option
should be used together with -p (or isPairedEnd in Rsubread
featureCounts).

-C
(countChimericFragments)

If specified, the chimeric fragments (those fragments that have
their two ends aligned to different chromosomes) will NOT
be counted. This option should be used together with -p (or
isPairedEnd in Rsubread featureCounts).
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6.3 A quick start for featureCounts in SourceForge Sub-
read

You need to provide read mapping results (in either SAM or BAM format) and an annotation
file for the read summarization. The example commands below assume your annotation file
is in GTF format.

Summarizing single-end reads using 5 threads:

featureCounts -T 5 -a annotation.gtf -t exon -g gene id

-o counts.txt mapping results SE.sam

Summarizing BAM format single-end read data:

featureCounts -a annotation.gtf -t exon -g gene id

-o counts.txt mapping results SE.bam

Summarizing paired-end reads and counting fragments (instead of reads):

featureCounts -p -a annotation.gtf -t exon -g gene id

-o counts.txt mapping results PE.sam

Counting fragments satisfying the fragment length criteria, eg. [50bp, 600bp]:

featureCounts -p -P -d 50 -D 600 -a annotation.gtf -t exon -g gene id

-o counts.txt mapping results PE.sam

Counting fragments which have both ends successfully aligned without considering the frag-
ment length constraint:

featureCounts -p -B -a annotation.gtf -t exon -g gene id

-o counts.txt mapping results PE.sam

Excluding chimeric fragments from the fragment counting:

featureCounts -p -C -a annotation.gtf -t exon -g gene id

-o counts.txt mapping results PE.sam
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6.4 A quick start for featureCounts in Bioconductor Rsub-
read

You need to provide read mapping results (in either SAM or BAM format) and an annotation
file for the read summarization. The example commands below assume your annotation file
is in GTF format.

Load Rsubread library from you R session:

library(Rsubread)

Summarizing single-end reads using built-in RefSeq annotation for mouse genome mm9:

featureCounts(files="mapping_results_SE.sam",annot.inbuilt="mm9")

Summarizing single-end reads using a user-provided GTF annotation file:

featureCounts(files="mapping_results_SE.sam",annot.ext="annotation.gtf",
isGTFAnnotationFile=TRUE,GTF.featureType="exon",GTF.attrType="gene_id")

Summarizing single-end reads using 5 threads:

featureCounts(files="mapping_results_SE.sam",nthreads=5)

Summarizing BAM format single-end read data:

featureCounts(files="mapping_results_SE.bam")

Summarizing paired-end reads and counting fragments (instead of reads):

featureCounts(files="mapping_results_PE.sam",isPairedEnd=TRUE)

Counting fragments satisfying the fragment length criteria, eg. [50bp, 600bp]:

featureCounts(files="mapping_results_PE.sam",isPairedEnd=TRUE,checkFragLength=TRUE,
minFragLength=50,maxFragLength=600)

Counting fragments which have both ends successfully aligned without considering the frag-
ment length constraint:

featureCounts(files="mapping_results_PE.sam",isPairedEnd=TRUE,requireBothEndsMapped=TRUE)

Excluding chimeric fragments from the fragment counting:

featureCounts(files="mapping_results_PE.sam",isPairedEnd=TRUE,countChimericFragments=FALSE)
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Chapter 7

SNP calling

7.1 Algorithm

SNPs(Single Nucleotide Polymorphisms) are the mutations of single nucleotides in the genome.
It has been reported that many diseases were initiated and/or driven by such mutations.
Therefore, successful detection of SNPs is very useful in designing better diagnosis and treat-
ments for a variety of diseases such as cancer. SNP detection also is an important subject of
many population studies.

Next-gen sequencing technologies provide an unprecedented opportunity to identify SNPs
at the highest resolution. However, it is extremely computing-intensive to analyze the data
generated from these technologies for the purpose of SNP discovery because of the sheer
volume of the data and the large number of chromosomal locations to be considered. To
discover SNPs, reads need to be mapped to the reference genome first and then all the read
data mapped to a particular site will be used for SNP calling for that site. Discovery of
SNPs is often confounded by many sources of errors. Mapping errors and sequencing errors
are often the major sources of errors causing incorrect SNP calling. Incorrect alignments of
indels, exon-exon junctions and fusions in the reads can also result in wrong placement of
blocks of continuous read bases, likely giving rise to consecutive incorrectly reported SNPs.

We have developed a highly accurate and efficient SNP caller, called exactSNP [8]. exact-
SNP calls SNPs for individual samples, without requiring control samples to be provided. It
tests the statistical significance of SNPs by comparing SNP signals to their background noises.
It has been found to be an order of magnitude faster than existing SNP callers.

7.2 exactSNP

Below is the command for running exactSNP program. The complete list of parameters used
by exactSNP can be found in Table 4.

exactSNP [options] -i input -g reference genome -o output

32



Table 4: arguments used by the exactSNP program included in the SourceForge Sub-
read package. Arguments included in parenthesis are the equivalent parameters used by
exactSNP function in Bioconductor Rsubread package.
Arguments Description
-i < file > [−b if BAM ]
(readF ile)

Specify name of an input file including read mapping results.
The format of input file can be SAM or BAM (-b needs to be
specified if a BAM file is provided).

-b
(isBAM)

Indicate the input file provided via −i is in BAM format.

-g < file >
(refGenomeFile)

Specify name of the file including all reference sequences.
Only one single FASTA format file should be provided.

-o < file >
(outputFile)

Specify name of the output file. This program outputs a VCF
format file that includes discovered SNPs.

-Q < int >
(qvalueCutoff)

Specify the q-value cutoff for SNP calling at sequencing depth
of 50X. 12 by default. The corresponding p-value cutoff is
10−Q. Note that this program automatically adjusts the q-
value cutoff according to the sequencing depth at each chro-
mosomal location.

-f < float >
(minAllelicFraction)

Specify the minimum fraction of mis-matched bases a SNP-
containing location must have. Its value must between 0 and
1. 0 by default.

-n < int >
(minAllelicBases)

Specify the minimum number of mis-matched bases a SNP-
containing location must have. 1 by default.

-r < int >
(minReads)

Specify the minimum number of mapped reads a SNP-
containing location must have (ie. the minimum coverage).
1 by default.

-x < int >
(maxReads)

Specify the maximum number of mapped reads a SNP-
containing location could have. 3000 by default. Any location
having more than the threshold number of reads will not be
considered for SNP calling. This option is useful for removing
PCR artefacts.

-s < int >
(minBaseQuality)

Specify the cutoff for base calling quality scores (Phred scores)
read bases must satisfy to be used for SNP calling. 13 by
default. Read bases that have Phred scores lower than the
cutoff value will be excluded from the analysis.

-t < int >
(nTrimmedBases)

Specify the number of bases trimmed off from each end of the
read. 3 by default.

-T < int >
(nthreads)

Specify the number of threads. 1 by default.
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-a < file >
(SNPAnnotationFile)

Specify name of a VCF-format file that includes annotated
SNPs. Such annotation files can be downloaded from public
databases such as the dbSNP database. Incorporating known
SNPs into SNP calling has been found to be helpful. However
note that the annotated SNPs may or may not be called for
the sample being analyzed.
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Chapter 8

Case studies

8.1 A Bioconductor R pipeline for analyzing RNA-seq

data

Here we illustrate how to use two Bioconductor packages - Rsubread and limma - to perform a
complete RNA-seq analysis, including Subread read mapping, featureCounts read summariza-
tion, voom normalization and limma differential expresssion analysis.

Data and software. The RNA-seq data used in this case study include four libraries: A 1,
A 2, B 1 and B 2. A 1 and A 2 are both Universal Human Reference RNA (UHRR) samples
but they underwent separate sample preparation. B 1 and B 2 are both Human Brain Ref-
erence RNA (HBRR) samples and they also underwent separate sample preparation. Note
that these libraries only included reads originating from human chromosome 1 (according to
Subread aligner). These read data were generated by the SEQC Consortium. We have put
into a tar ball these read data and the reference sequence data of chromosome 1 from human
genome build GRCh37/hg19, and it can be downloaded from
http://bioinf.wehi.edu.au/RNAseqCaseStudy/data.tar.gz (283MB).

After downloading the dataset, uncompress it and save it to your current working directory.
Launch R and load Rsubread and limma libraries by issuing the following commands at your
R prompt. Version of your R should be 3.0.2 or later. Rsubread version should be 1.12.1 or
later and limma version should be 3.18.0 or later. Note that this case study only runs on
Linux/Unix and Mac OS X.

library(Rsubread)
library(limma)

To install/update Rsubread and limma packages, issue the following commands at your R
prompt:

source("http://bioconductor.org/biocLite.R")
biocLite(pkgs=c("Rsubread","limma"))
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Index building. Build an index for human chromosome 1. This will take ∼3 minutes. Index
files with basename ‘chr1’ will be generated in your current working directory.

buildindex(basename="chr1",reference="hg19_chr1.fa")

Alignment. Perform read alignment for all four libraries and report uniquely mapped reads
only. This will take∼4 minutes. SAM files which include the mapping results will be generated
in your current working directory.

for(i in c("A_1","A_2","B_1","B_2"))
align(index="chr1",readfile1=paste(i,"txt",sep="."),output_file=paste(i,"sam",sep="."),
tieBreakHamming=TRUE,unique=TRUE,indels=5)

Read summarization. Summarize mapped reads to RefSeq genes. This will take less than
half a minute. Note that the featureCounts function contains built-in RefSeq annotations.
featureCounts returns an R ‘List’ object that includes a read count table and annotation
data. The read count table can be directly fed into limma for normalization and differential
expresssion analysis.

counts <- featureCounts(files=c("A_1.sam","A_2.sam","B_1.sam","B_2.sam"),annot.inbuilt="hg19")

Filtering. Calculate RPKM (reads per kilobases of exon per million reads mapped) values
for genes and use these values to filter out those genes which failed to achieve a 0.5 RPKM in
at least two libraries.

counts_rpkm <- apply(counts$counts,2,function(x) x*(1000/counts$annotation$Length)*(1e6/sum(x)))
isexpr <- rowSums(counts_rpkm >= 0.5) >= 2
x <- counts$counts[isexpr,]

Design matrix. The following analyses are very similar to the analyses performed for mi-
croarray expression data. Firstly, we create a design matrix:

celltype <- factor(c("A","A","B","B"))
design <- model.matrix(~0+celltype)
colnames(design) <- levels(celltype)

Normalization. Then we perform voom normalization:

y <- voom(x,design,plot=TRUE)

The figure below shows the mean-variance relationship estimated by voom for the data.
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Sample clustering. The following multi-dimensional scaling plot shows that sample A
libraries are clearly separated from sample B libraries.

plotMDS(y,xlim=c(-2.5,2.5))
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Linear model fitting and differential expression analysis. Fit linear models to genes
and assess differential expression using the eBayes moderated t statistic. Here we compare A
vs B. 556 and 983 genes were found down- and up-regulated in sample A compared to sample
B, respectively.

fit <- lmFit(y,design)
contr <- makeContrasts(AvsB=A-B,levels=design)
fit.contr <- eBayes(contrasts.fit(fit,contr))
dt <- decideTests(fit.contr)
summary(dt)

AvsB
-1 556
0 523
1 979

List top 10 differentially expressed genes:

options(digits=3)
topTable(fit.contr)

ID logFC AveExpr t P.Value adj.P.Val B
1639 2752 -2.39 12.9 -91.5 1.04e-20 1.40e-17 38.0
7 100131754 -1.63 16.0 -89.7 1.36e-20 1.40e-17 36.2
147 22883 -2.24 12.5 -70.3 4.05e-19 2.78e-16 34.4
313 6135 2.23 12.1 67.7 6.81e-19 3.05e-16 33.8
598 4904 2.99 11.5 66.4 8.77e-19 3.05e-16 33.5
136 2023 2.72 13.5 66.4 8.90e-19 3.05e-16 33.3
641 6202 2.40 12.1 64.5 1.32e-18 3.89e-16 33.2
501 23154 -3.73 11.4 -57.6 6.25e-18 1.61e-15 31.3
917 6125 2.01 11.8 50.2 4.27e-17 9.76e-15 29.7
1448 8682 -2.59 11.7 -49.0 5.85e-17 1.20e-14 29.4
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