BiocNeighbors 1.18.0
The BiocNeighbors package provides several algorithms for approximate neighbor searches:
These methods complement the exact algorithms described previously.
Again, it is straightforward to switch from one algorithm to another by simply changing the BNPARAM argument in findKNN and queryKNN.
We perform the k-nearest neighbors search with the Annoy algorithm by specifying BNPARAM=AnnoyParam().
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
fout <- findKNN(data, k=10, BNPARAM=AnnoyParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1411 3156 5127 9706 8865 2033 6608 7808 8992 1531
## [2,] 8650 2146 8057 60 8299 9951 1923 8408 6779 7254
## [3,] 1333 8306 8523 8188 3783 3211 543 4802 9816 1212
## [4,] 2901 1747 566 7570 2121 3328 3620 2050 4617 4536
## [5,] 5441 6389 6655 8523 1782 3448 2649 467 5320 2477
## [6,] 843 4472 4934 506 8133 9518 797 631 5956 2589
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.9113433 0.9442689 0.9674024 0.9716540 0.9831457 1.0116637 1.0335116
## [2,] 0.8163012 0.8510935 0.9216015 0.9657613 0.9907292 0.9948630 0.9986632
## [3,] 0.8113317 0.8649326 0.8666590 0.8732036 0.8749936 0.8755187 0.8899532
## [4,] 0.9229928 0.9834348 0.9905853 1.0542908 1.0658935 1.0660372 1.0678189
## [5,] 0.8148131 0.8749768 0.8932300 0.9118466 1.0324681 1.0409095 1.0410593
## [6,] 0.9233640 0.9345645 0.9394530 0.9717999 0.9935158 0.9954746 1.0179756
## [,8] [,9] [,10]
## [1,] 1.0360973 1.0893233 1.0962842
## [2,] 1.0065637 1.0135359 1.0158643
## [3,] 0.9001028 0.9132335 0.9384832
## [4,] 1.0878972 1.0988855 1.1017878
## [5,] 1.0424314 1.0544243 1.0622605
## [6,] 1.0183369 1.0280355 1.0496942
We can also identify the k-nearest neighbors in one dataset based on query points in another dataset.
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
qout <- queryKNN(data, query, k=5, BNPARAM=AnnoyParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 8828 8021 1216 5974 4222
## [2,] 1002 7945 2511 8710 226
## [3,] 2887 5068 3095 2796 7391
## [4,] 6334 2460 9655 5531 2016
## [5,] 8816 12 2179 9628 6158
## [6,] 9345 8683 7753 3880 7428
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.7474802 0.8132715 0.9063365 0.9830542 0.9879160
## [2,] 0.9383955 0.9541859 1.0251299 1.0256882 1.0368404
## [3,] 0.8047271 1.1227342 1.1300002 1.1451337 1.1456198
## [4,] 0.8857076 0.9328380 0.9795797 0.9918284 0.9975939
## [5,] 1.0858150 1.1334616 1.1439090 1.1892228 1.1904478
## [6,] 0.9220677 0.9237384 1.0348144 1.0457319 1.0841793
It is similarly easy to use the HNSW algorithm by setting BNPARAM=HnswParam().
Most of the options described for the exact methods are also applicable here. For example:
subset to identify neighbors for a subset of points.get.distance to avoid retrieving distances when unnecessary.BPPARAM to parallelize the calculations across multiple workers.BNINDEX to build the forest once for a given data set and re-use it across calls.The use of a pre-built BNINDEX is illustrated below:
pre <- buildIndex(data, BNPARAM=AnnoyParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
Both Annoy and HNSW perform searches based on the Euclidean distance by default.
Searching by Manhattan distance is done by simply setting distance="Manhattan" in AnnoyParam() or HnswParam().
Users are referred to the documentation of each function for specific details on the available arguments.
Both Annoy and HNSW generate indexing structures - a forest of trees and series of graphs, respectively -
that are saved to file when calling buildIndex().
By default, this file is located in tempdir()1 On HPC file systems, you can change TEMPDIR to a location that is more amenable to concurrent access. and will be removed when the session finishes.
AnnoyIndex_path(pre)
## [1] "F:\\biocbuild\\bbs-3.17-bioc\\tmpdir\\Rtmpsfj5aE\\file2be45cf57059.idx"
If the index is to persist across sessions, the path of the index file can be directly specified in buildIndex.
This can be used to construct an index object directly using the relevant constructors, e.g., AnnoyIndex(), HnswIndex().
However, it becomes the responsibility of the user to clean up any temporary indexing files after calculations are complete.
sessionInfo()
## R version 4.3.0 RC (2023-04-13 r84269 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows Server 2022 x64 (build 20348)
##
## Matrix products: default
##
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocNeighbors_1.18.0 knitr_1.42 BiocStyle_2.28.0
##
## loaded via a namespace (and not attached):
## [1] cli_3.6.1 rlang_1.1.0 xfun_0.39
## [4] jsonlite_1.8.4 S4Vectors_0.38.0 htmltools_0.5.5
## [7] stats4_4.3.0 sass_0.4.5 rmarkdown_2.21
## [10] grid_4.3.0 evaluate_0.20 jquerylib_0.1.4
## [13] fastmap_1.1.1 yaml_2.3.7 bookdown_0.33
## [16] BiocManager_1.30.20 compiler_4.3.0 codetools_0.2-19
## [19] Rcpp_1.0.10 BiocParallel_1.34.0 lattice_0.21-8
## [22] digest_0.6.31 R6_2.5.1 parallel_4.3.0
## [25] bslib_0.4.2 Matrix_1.5-4 tools_4.3.0
## [28] BiocGenerics_0.46.0 cachem_1.0.7