We announce the new tidy and modular interface for a sccomp, which improves modularity, and clarity. The main change is the modularisation of sccomp in functions which can be linked with the pipe operator |>.
| Function | Description |
|---|---|
Estimation: sccomp_stimate() |
which is usually run once in the analysis (per model). |
Testing: sccomp_test() |
which candy run multiple times, depending on how many contrasts you want to test (e.g. age, untreated vs treated). |
Outlier removal: sccomp_remove_outliers() |
which is usually run once after sccomp_estimate() in case you want to produce estimates not influenced by outlier data points. |
Unwanted variation removal: sccomp_remove_unwanted_variation() |
which is run after sccomp_estimate() and produces a dataset that just preserve the variability of your factor of interest. |
Data replication: sccomp_replicate() |
which is run after sccomp_estimate() and produces a dataset representing the theoretical data distribution according to the model (from the posterior distribution). |
Plotting: plot() |
which is run after sccomp_test and outputs a series of summary plots. |
sccompsccomp is a statistical model developed for differential variability analysis in compositional data, primarily used in cellular omics fields like single-cell genomics, proteomics, and microbiomics (Mangiola et al. 2023). It addresses limitations of existing methods in differential abundance analysis by incorporating several advanced features. sccomp effectively models compositional count data properties, which were previously not adequately addressed, and tackles cell-group-specific differential variability. This model uses a constrained Beta-binomial distribution to enable more precise analyses. Key capabilities of sccomp include improved differential abundance analyses through cross-sample information borrowing, outlier identification and exclusion, realistic data simulation, and facilitating cross-study knowledge transfer. By incorporating these features, sccomp provides a more comprehensive and accurate framework for analyzing cellular omics data, identifying crucial biological drivers such as disease progression markers in cancer and pathogen infection.
Bioconductor
if (!requireNamespace("BiocManager")) install.packages("BiocManager")
BiocManager::install("sccomp")
Github
devtools::install_github("stemangiola/sccomp")
sccomp_glm()The new framework
outlier_free_estimate =
seurat_obj |>
# Estimate
sccomp_estimate(
formula_composition = ~ type + continuous_covariate,
.sample = sample,
.cell_group = cell_group,
cores = 1
) |>
# Remove outliers
sccomp_remove_outliers(cores = 1)
##
## SAMPLING FOR MODEL 'glm_multi_beta_binomial' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.000467 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 4.67 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 4300 [ 0%] (Warmup)
## Chain 1: Iteration: 301 / 4300 [ 7%] (Sampling)
## Chain 1: Iteration: 1300 / 4300 [ 30%] (Sampling)
## Chain 1: Iteration: 2300 / 4300 [ 53%] (Sampling)
## Chain 1: Iteration: 3300 / 4300 [ 76%] (Sampling)
## Chain 1: Iteration: 4300 / 4300 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 3.609 seconds (Warm-up)
## Chain 1: 26.633 seconds (Sampling)
## Chain 1: 30.242 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'glm_multi_beta_binomial' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.000489 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 4.89 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 20299 [ 0%] (Warmup)
## Chain 1: Iteration: 301 / 20299 [ 1%] (Sampling)
## Chain 1: Iteration: 1300 / 20299 [ 6%] (Sampling)
## Chain 1: Iteration: 2300 / 20299 [ 11%] (Sampling)
## Chain 1: Iteration: 3300 / 20299 [ 16%] (Sampling)
## Chain 1: Iteration: 4300 / 20299 [ 21%] (Sampling)
## Chain 1: Iteration: 5300 / 20299 [ 26%] (Sampling)
## Chain 1: Iteration: 6300 / 20299 [ 31%] (Sampling)
## Chain 1: Iteration: 7300 / 20299 [ 35%] (Sampling)
## Chain 1: Iteration: 8300 / 20299 [ 40%] (Sampling)
## Chain 1: Iteration: 9300 / 20299 [ 45%] (Sampling)
## Chain 1: Iteration: 10300 / 20299 [ 50%] (Sampling)
## Chain 1: Iteration: 11300 / 20299 [ 55%] (Sampling)
## Chain 1: Iteration: 12300 / 20299 [ 60%] (Sampling)
## Chain 1: Iteration: 13300 / 20299 [ 65%] (Sampling)
## Chain 1: Iteration: 14300 / 20299 [ 70%] (Sampling)
## Chain 1: Iteration: 15300 / 20299 [ 75%] (Sampling)
## Chain 1: Iteration: 16300 / 20299 [ 80%] (Sampling)
## Chain 1: Iteration: 17300 / 20299 [ 85%] (Sampling)
## Chain 1: Iteration: 18300 / 20299 [ 90%] (Sampling)
## Chain 1: Iteration: 19300 / 20299 [ 95%] (Sampling)
## Chain 1: Iteration: 20299 / 20299 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 3.666 seconds (Warm-up)
## Chain 1: 129.104 seconds (Sampling)
## Chain 1: 132.77 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'glm_multi_beta_binomial' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.000505 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 5.05 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 4300 [ 0%] (Warmup)
## Chain 1: Iteration: 301 / 4300 [ 7%] (Sampling)
## Chain 1: Iteration: 1300 / 4300 [ 30%] (Sampling)
## Chain 1: Iteration: 2300 / 4300 [ 53%] (Sampling)
## Chain 1: Iteration: 3300 / 4300 [ 76%] (Sampling)
## Chain 1: Iteration: 4300 / 4300 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 3.589 seconds (Warm-up)
## Chain 1: 26.351 seconds (Sampling)
## Chain 1: 29.94 seconds (Total)
## Chain 1:
# Test
outlier_free_estimate |>
sccomp_test(contrasts = "typehealthy")
## # A tibble: 30 × 18
## cell_group parameter factor c_lower c_effect c_upper c_pH0 c_FDR c_n_eff
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 B immature typeheal… type 0.890 1.41 1.91 0 0 4296.
## 2 B mem typeheal… type 1.09 1.72 2.34 0 0 4619.
## 3 CD4 cm S1… typeheal… type 0.589 0.995 1.43 0 0 3300.
## 4 CD4 cm hi… typeheal… type -3.06 -1.98 -1.03 0 0 3722.
## 5 CD4 cm ri… typeheal… type -1.79 -1.06 -0.354 0.00525 1.03e-3 4018.
## 6 CD4 em hi… typeheal… type -2.22 -1.40 -0.621 0.00100 1.79e-4 4162.
## 7 CD4 naive typeheal… type 0.219 0.816 1.41 0.0218 5.88e-3 4210.
## 8 CD4 ribos… typeheal… type 1.54 2.04 2.54 0 0 4627.
## 9 CD8 em 1 typeheal… type -0.534 0.128 0.712 0.597 1.24e-1 5915.
## 10 CD8 em 2 typeheal… type -2.15 -0.999 -0.00332 0.0625 1.62e-2 3178.
## # ℹ 20 more rows
## # ℹ 9 more variables: c_R_k_hat <dbl>, v_lower <dbl>, v_effect <dbl>,
## # v_upper <dbl>, v_pH0 <dbl>, v_FDR <dbl>, v_n_eff <dbl>, v_R_k_hat <dbl>,
## # count_data <list>
Replaces the old framework (that now will receive a deprecation warning)
seurat_obj |>
# Estimate
sccomp_glm(
formula_composition = ~ type + continuous_covariate,
.sample = sample,
.cell_group = cell_group,
check_outliers = TRUE,
contrasts = "typehealthy",
cores = 1
)
For visualisation purposes, we can select factor of interest we would like to preserve the effect for, end exclude all the rest. For example, if we want to produce a dataset with just the type effect, we can execute
outlier_free_estimate |>
sccomp_remove_unwanted_variation(~ type)
## sccomp says: calculating residuals
## sccomp says: regressing out unwanted factors
## # A tibble: 600 × 5
## sample cell_group adjusted_proportion adjusted_counts logit_residuals
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 10x_6K B immature 0.0554 260. -0.754
## 2 10x_8K B immature 0.144 1082. 0.321
## 3 GSE115189 B immature 0.114 267. 0.0234
## 4 SCP345_580 B immature 0.0903 520. -0.206
## 5 SCP345_860 B immature 0.151 972. 0.377
## 6 SCP424_pbmc1 B immature 0.113 302. -0.0244
## 7 SCP424_pbmc2 B immature 0.202 603. 0.714
## 8 SCP591 B immature 0.0248 14.1 -1.57
## 9 SI-GA-E5 B immature 0.0240 100. -0.705
## 10 SI-GA-E7 B immature 0.0974 715. 0.784
## # ℹ 590 more rows
The bloating functionalities have been improved. Now, both discrete and continuous variables can be visualised overlaying the to reticle data distribution from the model. This helps the user understanding whether the model is descriptively adequate to the data.
For example, if the theoretical data distribution from the sccomp does not overlap with the observed data distribution, this is an indication that the probability distribution used by sccomp is not suitable for the data or a different model (design matrix) should be used.
outlier_free_estimate |>
sccomp_test(contrasts = "typehealthy") |>
plot()
## $boxplot
## $boxplot[[1]]
##
##
## $credible_intervals_1D
Now plotting the test against the continuous covariate
outlier_free_estimate |>
sccomp_test(contrasts = "continuous_covariate") |>
plot()
## $boxplot
## $boxplot[[1]]
##
##
## $credible_intervals_1D
sessionInfo()
## R Under development (unstable) (2024-01-16 r85808)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] rstan_2.32.5 StanHeaders_2.32.5 tidyr_1.3.0 forcats_1.0.0
## [5] ggplot2_3.4.4 sccomp_1.7.5 dplyr_1.1.4
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.0 farver_2.1.1
## [3] loo_2.6.0 bitops_1.0-7
## [5] SingleCellExperiment_1.25.0 RCurl_1.98-1.14
## [7] digest_0.6.34 dotCall64_1.1-1
## [9] mime_0.12 lifecycle_1.0.4
## [11] SeuratObject_5.0.1 magrittr_2.0.3
## [13] compiler_4.4.0 rlang_1.1.3
## [15] tools_4.4.0 yaml_2.3.8
## [17] utf8_1.2.4 knitr_1.45
## [19] labeling_0.4.3 S4Arrays_1.3.2
## [21] sp_2.1-2 pkgbuild_1.4.3
## [23] curl_5.2.0 DelayedArray_0.29.0
## [25] RColorBrewer_1.1-3 abind_1.4-5
## [27] withr_3.0.0 purrr_1.0.2
## [29] BiocGenerics_0.49.1 grid_4.4.0
## [31] stats4_4.4.0 fansi_1.0.6
## [33] colorspace_2.1-0 future_1.33.1
## [35] inline_0.3.19 progressr_0.14.0
## [37] globals_0.16.2 scales_1.3.0
## [39] SummarizedExperiment_1.33.2 cli_3.6.2
## [41] crayon_1.5.2 generics_0.1.3
## [43] RcppParallel_5.1.7 future.apply_1.11.1
## [45] tzdb_0.4.0 commonmark_1.9.0
## [47] stringr_1.5.1 splines_4.4.0
## [49] zlibbioc_1.49.0 parallel_4.4.0
## [51] XVector_0.43.1 matrixStats_1.2.0
## [53] vctrs_0.6.5 V8_4.4.1
## [55] boot_1.3-28.1 Matrix_1.6-5
## [57] jsonlite_1.8.8 IRanges_2.37.1
## [59] hms_1.1.3 patchwork_1.2.0
## [61] S4Vectors_0.41.3 ggrepel_0.9.5
## [63] listenv_0.9.0 glue_1.7.0
## [65] parallelly_1.36.0 spam_2.10-0
## [67] codetools_0.2-19 stringi_1.8.3
## [69] gtable_0.3.4 GenomeInfoDb_1.39.5
## [71] QuickJSR_1.1.0 GenomicRanges_1.55.1
## [73] munsell_0.5.0 tibble_3.2.1
## [75] pillar_1.9.0 GenomeInfoDbData_1.2.11
## [77] R6_2.5.1 evaluate_0.23
## [79] lattice_0.22-5 Biobase_2.63.0
## [81] markdown_1.12 highr_0.10
## [83] readr_2.1.5 rstantools_2.3.1.1
## [85] Rcpp_1.0.12 nlme_3.1-164
## [87] gridExtra_2.3 SparseArray_1.3.3
## [89] mgcv_1.9-1 xfun_0.41
## [91] MatrixGenerics_1.15.0 pkgconfig_2.0.3