CRAN Package Check Results for Package mlsurvlrnrs

Last updated on 2025-09-08 09:50:24 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.0.5 7.01 174.47 181.48 OK
r-devel-linux-x86_64-debian-gcc 0.0.5 3.81 150.97 154.78 ERROR
r-devel-linux-x86_64-fedora-clang 0.0.5 238.47 ERROR
r-devel-linux-x86_64-fedora-gcc 0.0.5 317.25 ERROR
r-devel-windows-x86_64 0.0.5 8.00 338.00 346.00 OK
r-patched-linux-x86_64 0.0.5 6.64 232.10 238.74 OK
r-release-linux-x86_64 0.0.5 6.50 230.31 236.81 OK
r-release-macos-arm64 0.0.5 159.00 OK
r-release-macos-x86_64 0.0.5 155.00 OK
r-release-windows-x86_64 0.0.5 8.00 338.00 346.00 OK
r-oldrel-macos-arm64 0.0.5 113.00 OK
r-oldrel-macos-x86_64 0.0.5 167.00 OK
r-oldrel-windows-x86_64 0.0.5 11.00 471.00 482.00 OK

Check Details

Version: 0.0.5
Check: examples
Result: ERROR Running examples in ‘mlsurvlrnrs-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: LearnerSurvCoxPHCox > ### Title: R6 Class to construct a Cox proportional hazards survival > ### learner > ### Aliases: LearnerSurvCoxPHCox > > ### ** Examples > > # survival analysis > > dataset <- survival::colon |> + data.table::as.data.table() |> + na.omit() > dataset <- dataset[get("etype") == 2, ] > > seed <- 123 > surv_cols <- c("status", "time", "rx") > > feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)] > > split_vector <- splitTools::multi_strata( + df = dataset[, .SD, .SDcols = surv_cols], + strategy = "kmeans", + k = 4 + ) > > train_x <- model.matrix( + ~ -1 + ., + dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])] + ) > train_y <- survival::Surv( + event = (dataset[, get("status")] |> + as.character() |> + as.integer()), + time = dataset[, get("time")], + type = "right" + ) > > fold_list <- splitTools::create_folds( + y = split_vector, + k = 3, + type = "stratified", + seed = seed + ) > > > surv_coxph_cox_optimizer <- mlexperiments::MLCrossValidation$new( + learner = LearnerSurvCoxPHCox$new(), + fold_list = fold_list, + ncores = 1L, + seed = seed + ) > surv_coxph_cox_optimizer$performance_metric <- c_index > > # set data > surv_coxph_cox_optimizer$set_data( + x = train_x, + y = train_y + ) > > surv_coxph_cox_optimizer$execute() CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. Error: Package "measures" must be installed to use function 'metric_types_helper()'. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.0.5
Check: tests
Result: ERROR Running ‘testthat.R’ [100s/317s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > Sys.setenv("OMP_THREAD_LIMIT" = 2) > Sys.setenv("Ncpu" = 2) > > library(testthat) > library(mlsurvlrnrs) > > test_check("mlsurvlrnrs") CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold1 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 6.024 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.948 seconds 3) Running FUN 2 times in 2 thread(s)... 1.101 seconds CV fold: Fold2 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 5.458 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 1.409 seconds 3) Running FUN 2 times in 2 thread(s)... 1.154 seconds CV fold: Fold3 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 5.863 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.713 seconds 3) Running FUN 2 times in 2 thread(s)... 1.062 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 5.457 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... 12.254 seconds 3) Running FUN 2 times in 2 thread(s)... 0.972 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 6.25 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 11.9 seconds 3) Running FUN 2 times in 2 thread(s)... 0.573 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 5.422 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... 0.907 seconds 3) Running FUN 2 times in 2 thread(s)... 0.616 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 4.625 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.544 seconds 3) Running FUN 2 times in 2 thread(s)... 0.699 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 5.543 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.743 seconds 3) Running FUN 2 times in 2 thread(s)... 0.82 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 5.631 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.383 seconds 3) Running FUN 2 times in 2 thread(s)... 0.444 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 5.098 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 11.692 seconds 3) Running FUN 2 times in 2 thread(s)... 0.496 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 6.909 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 9.135 seconds 3) Running FUN 2 times in 2 thread(s)... 0.902 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 6.879 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 5.538 seconds 3) Running FUN 2 times in 2 thread(s)... 0.71 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 4.612 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Maximum convergence attempts exceeded - process is probably sampling random points. 87.429 seconds 3) Running FUN 2 times in 2 thread(s)... 0.516 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 5.26 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 9.783 seconds 3) Running FUN 2 times in 2 thread(s)... 0.352 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 4.239 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 2.128 seconds 3) Running FUN 2 times in 2 thread(s)... 0.659 seconds [ FAIL 6 | WARN 0 | SKIP 1 | PASS 0 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test-lints.R:10:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-surv_coxph_cox.R:56:5'): test cv - surv_coxph_cox ────────────── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_coxph_cox_optimizer$execute() at test-surv_coxph_cox.R:56:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_glmnet_cox.R:99:5'): test nested cv, grid - surv_glmnet_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_glmnet_cox_optimizer$execute() at test-surv_glmnet_cox.R:99:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_ranger_cox.R:110:5'): test nested cv, bayesian - surv_ranger_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_ranger_cox_optimizer$execute() at test-surv_ranger_cox.R:110:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_rpart_cox.R:108:5'): test nested cv, bayesian - surv_rpart_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_rpart_cox_optimizer$execute() at test-surv_rpart_cox.R:108:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_xgboost_aft.R:116:5'): test nested cv, bayesian - surv_xgboost_aft ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_xgboost_aft_optimizer$execute() at test-surv_xgboost_aft.R:116:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_xgboost_cox.R:115:5'): test nested cv, bayesian - surv_xgboost_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_xgboost_cox_optimizer$execute() at test-surv_xgboost_cox.R:115:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) [ FAIL 6 | WARN 0 | SKIP 1 | PASS 0 ] Error: Test failures Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.0.5
Check: examples
Result: ERROR Running examples in ‘mlsurvlrnrs-Ex.R’ failed The error most likely occurred in: > ### Name: LearnerSurvCoxPHCox > ### Title: R6 Class to construct a Cox proportional hazards survival > ### learner > ### Aliases: LearnerSurvCoxPHCox > > ### ** Examples > > # survival analysis > > dataset <- survival::colon |> + data.table::as.data.table() |> + na.omit() > dataset <- dataset[get("etype") == 2, ] > > seed <- 123 > surv_cols <- c("status", "time", "rx") > > feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)] > > split_vector <- splitTools::multi_strata( + df = dataset[, .SD, .SDcols = surv_cols], + strategy = "kmeans", + k = 4 + ) > > train_x <- model.matrix( + ~ -1 + ., + dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])] + ) > train_y <- survival::Surv( + event = (dataset[, get("status")] |> + as.character() |> + as.integer()), + time = dataset[, get("time")], + type = "right" + ) > > fold_list <- splitTools::create_folds( + y = split_vector, + k = 3, + type = "stratified", + seed = seed + ) > > > surv_coxph_cox_optimizer <- mlexperiments::MLCrossValidation$new( + learner = LearnerSurvCoxPHCox$new(), + fold_list = fold_list, + ncores = 1L, + seed = seed + ) > surv_coxph_cox_optimizer$performance_metric <- c_index > > # set data > surv_coxph_cox_optimizer$set_data( + x = train_x, + y = train_y + ) > > surv_coxph_cox_optimizer$execute() CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. Error: Package "measures" must be installed to use function 'metric_types_helper()'. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.0.5
Check: tests
Result: ERROR Running ‘testthat.R’ [122s/405s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > Sys.setenv("OMP_THREAD_LIMIT" = 2) > Sys.setenv("Ncpu" = 2) > > library(testthat) > library(mlsurvlrnrs) > > test_check("mlsurvlrnrs") CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold1 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 9.703 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 2.43 seconds 3) Running FUN 2 times in 2 thread(s)... 1.483 seconds CV fold: Fold2 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 9.873 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 2.606 seconds 3) Running FUN 2 times in 2 thread(s)... 1.493 seconds CV fold: Fold3 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 9.365 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 1.402 seconds 3) Running FUN 2 times in 2 thread(s)... 1.432 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 7.202 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Maximum convergence attempts exceeded - process is probably sampling random points. 112 seconds 3) Running FUN 2 times in 2 thread(s)... 0.641 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 7.292 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 31.118 seconds 3) Running FUN 2 times in 2 thread(s)... 0.814 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 7.399 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 4.91 seconds 3) Running FUN 2 times in 2 thread(s)... 0.673 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 7.433 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.918 seconds 3) Running FUN 2 times in 2 thread(s)... 0.557 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 7.36 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 1.135 seconds 3) Running FUN 2 times in 2 thread(s)... 1.036 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 7.618 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.936 seconds 3) Running FUN 2 times in 2 thread(s)... 0.621 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 7.403 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 18.456 seconds 3) Running FUN 2 times in 2 thread(s)... 0.807 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 7.621 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 5.441 seconds 3) Running FUN 2 times in 2 thread(s)... 0.796 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 7.38 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 11.006 seconds 3) Running FUN 2 times in 2 thread(s)... 0.761 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 6.81 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 6.841 seconds 3) Running FUN 2 times in 2 thread(s)... 0.465 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 6.855 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... 14.425 seconds 3) Running FUN 2 times in 2 thread(s)... 0.639 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 6.37 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 8.252 seconds 3) Running FUN 2 times in 2 thread(s)... 0.52 seconds [ FAIL 6 | WARN 0 | SKIP 1 | PASS 0 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test-lints.R:10:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-surv_coxph_cox.R:56:5'): test cv - surv_coxph_cox ────────────── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_coxph_cox_optimizer$execute() at test-surv_coxph_cox.R:56:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_glmnet_cox.R:99:5'): test nested cv, grid - surv_glmnet_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_glmnet_cox_optimizer$execute() at test-surv_glmnet_cox.R:99:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_ranger_cox.R:110:5'): test nested cv, bayesian - surv_ranger_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_ranger_cox_optimizer$execute() at test-surv_ranger_cox.R:110:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_rpart_cox.R:108:5'): test nested cv, bayesian - surv_rpart_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_rpart_cox_optimizer$execute() at test-surv_rpart_cox.R:108:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_xgboost_aft.R:116:5'): test nested cv, bayesian - surv_xgboost_aft ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_xgboost_aft_optimizer$execute() at test-surv_xgboost_aft.R:116:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_xgboost_cox.R:115:5'): test nested cv, bayesian - surv_xgboost_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_xgboost_cox_optimizer$execute() at test-surv_xgboost_cox.R:115:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) [ FAIL 6 | WARN 0 | SKIP 1 | PASS 0 ] Error: Test failures Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.0.5
Check: examples
Result: ERROR Running examples in ‘mlsurvlrnrs-Ex.R’ failed The error most likely occurred in: > ### Name: LearnerSurvCoxPHCox > ### Title: R6 Class to construct a Cox proportional hazards survival > ### learner > ### Aliases: LearnerSurvCoxPHCox > > ### ** Examples > > # survival analysis > > dataset <- survival::colon |> + data.table::as.data.table() |> + na.omit() > dataset <- dataset[get("etype") == 2, ] > > seed <- 123 > surv_cols <- c("status", "time", "rx") > > feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)] > > split_vector <- splitTools::multi_strata( + df = dataset[, .SD, .SDcols = surv_cols], + strategy = "kmeans", + k = 4 + ) > > train_x <- model.matrix( + ~ -1 + ., + dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])] + ) > train_y <- survival::Surv( + event = (dataset[, get("status")] |> + as.character() |> + as.integer()), + time = dataset[, get("time")], + type = "right" + ) > > fold_list <- splitTools::create_folds( + y = split_vector, + k = 3, + type = "stratified", + seed = seed + ) > > > surv_coxph_cox_optimizer <- mlexperiments::MLCrossValidation$new( + learner = LearnerSurvCoxPHCox$new(), + fold_list = fold_list, + ncores = 1L, + seed = seed + ) > surv_coxph_cox_optimizer$performance_metric <- c_index > > # set data > surv_coxph_cox_optimizer$set_data( + x = train_x, + y = train_y + ) > > surv_coxph_cox_optimizer$execute() CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. Error in if (fun_name == "PPV") { : argument is of length zero Calls: <Anonymous> ... .compute_performance -> sapply -> lapply -> FUN -> metric_types_helper Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.0.5
Check: tests
Result: ERROR Running ‘testthat.R’ [3m/11m] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > Sys.setenv("OMP_THREAD_LIMIT" = 2) > Sys.setenv("Ncpu" = 2) > > library(testthat) > library(mlsurvlrnrs) > > test_check("mlsurvlrnrs") CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold1 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 18.113 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 3.769 seconds 3) Running FUN 2 times in 2 thread(s)... 2.794 seconds CV fold: Fold2 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 23.127 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 5.873 seconds 3) Running FUN 2 times in 2 thread(s)... 3.731 seconds CV fold: Fold3 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 21.358 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 3.62 seconds 3) Running FUN 2 times in 2 thread(s)... 4.17 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 16.748 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... 26.975 seconds 3) Running FUN 2 times in 2 thread(s)... 1.116 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 13.961 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 62.501 seconds 3) Running FUN 2 times in 2 thread(s)... 1.034 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 12.681 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... 2.052 seconds 3) Running FUN 2 times in 2 thread(s)... 1.097 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 13.554 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 1.56 seconds 3) Running FUN 2 times in 2 thread(s)... 0.909 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 12.599 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 1.431 seconds 3) Running FUN 2 times in 2 thread(s)... 0.887 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 10.399 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 1.323 seconds 3) Running FUN 2 times in 2 thread(s)... 0.884 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 11.576 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 33.277 seconds 3) Running FUN 2 times in 2 thread(s)... 1.072 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 10.73 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 25.231 seconds 3) Running FUN 2 times in 2 thread(s)... 0.926 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 9.757 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 13.081 seconds 3) Running FUN 2 times in 2 thread(s)... 0.779 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 7.431 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Maximum convergence attempts exceeded - process is probably sampling random points. 140.881 seconds 3) Running FUN 2 times in 2 thread(s)... 0.479 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 5.77 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 18.057 seconds 3) Running FUN 2 times in 2 thread(s)... 0.589 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 5.793 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 3.506 seconds 3) Running FUN 2 times in 2 thread(s)... 0.553 seconds [ FAIL 6 | WARN 0 | SKIP 1 | PASS 0 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test-lints.R:10:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-surv_coxph_cox.R:56:5'): test cv - surv_coxph_cox ────────────── Error in `if (fun_name == "PPV") { metric_metadata$probabilities <- FALSE }`: argument is of length zero Backtrace: ▆ 1. └─surv_coxph_cox_optimizer$execute() at test-surv_coxph_cox.R:56:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_glmnet_cox.R:99:5'): test nested cv, grid - surv_glmnet_cox ── Error in `if (fun_name == "PPV") { metric_metadata$probabilities <- FALSE }`: argument is of length zero Backtrace: ▆ 1. └─surv_glmnet_cox_optimizer$execute() at test-surv_glmnet_cox.R:99:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_ranger_cox.R:110:5'): test nested cv, bayesian - surv_ranger_cox ── Error in `if (fun_name == "PPV") { metric_metadata$probabilities <- FALSE }`: argument is of length zero Backtrace: ▆ 1. └─surv_ranger_cox_optimizer$execute() at test-surv_ranger_cox.R:110:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_rpart_cox.R:108:5'): test nested cv, bayesian - surv_rpart_cox ── Error in `if (fun_name == "PPV") { metric_metadata$probabilities <- FALSE }`: argument is of length zero Backtrace: ▆ 1. └─surv_rpart_cox_optimizer$execute() at test-surv_rpart_cox.R:108:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_xgboost_aft.R:116:5'): test nested cv, bayesian - surv_xgboost_aft ── Error in `if (fun_name == "PPV") { metric_metadata$probabilities <- FALSE }`: argument is of length zero Backtrace: ▆ 1. └─surv_xgboost_aft_optimizer$execute() at test-surv_xgboost_aft.R:116:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_xgboost_cox.R:115:5'): test nested cv, bayesian - surv_xgboost_cox ── Error in `if (fun_name == "PPV") { metric_metadata$probabilities <- FALSE }`: argument is of length zero Backtrace: ▆ 1. └─surv_xgboost_cox_optimizer$execute() at test-surv_xgboost_cox.R:115:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) [ FAIL 6 | WARN 0 | SKIP 1 | PASS 0 ] Error: Test failures Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc