
Package ‘ApplyPolygenicScore’
August 21, 2025

Type Package

Title Utilities for the Application of a Polygenic Score to a VCF

Version 4.0.0

Description Simple and transparent parsing of genotype/dosage data
from an input Variant Call Format (VCF) file, matching of genotype
coordinates to the component Single Nucleotide Polymorphisms (SNPs)
of an existing polygenic score (PGS), and application of SNP weights
to dosages for the calculation of a polygenic score for each individual
in accordance with the additive weighted sum of dosages model. Methods
are designed in reference to best practices described by
Collister, Liu, and Clifton (2022) <doi:10.3389/fgene.2022.818574>.

Depends R (>= 4.2.0)

Imports vcfR, pROC, data.table, BoutrosLab.plotting.general, lattice

Suggests knitr, rmarkdown, scales, testthat (>= 3.0.0)

Config/testthat/edition 3

License GPL-2

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

Author Paul Boutros [cre],
Nicole Zeltser [aut] (ORCID: <https://orcid.org/0000-0001-7246-2771>),
Rachel Dang [ctb],
Raag Agrawal [ctb]

Maintainer Paul Boutros <PBoutros@mednet.ucla.edu>

Repository CRAN

Date/Publication 2025-08-20 23:20:02 UTC

1

https://doi.org/10.3389/fgene.2022.818574
https://orcid.org/0000-0001-7246-2771

2 analyze.pgs.binary.predictiveness

Contents
analyze.pgs.binary.predictiveness . 2
apply.polygenic.score . 5
assess.pgs.vcf.allele.match . 11
check.pgs.weight.columns . 13
combine.pgs.bed . 14
combine.vcf.with.pgs . 15
convert.allele.frequency.to.dosage . 16
convert.alleles.to.pgs.dosage . 16
convert.pgs.to.bed . 17
create.pgs.boxplot . 18
create.pgs.density.plot . 20
create.pgs.rank.plot . 22
create.pgs.with.continuous.phenotype.plot . 25
flip.DNA.allele . 28
format.chromosome.notation . 29
get.pgs.percentiles . 29
import.pgs.weight.file . 30
import.vcf . 31
parse.pgs.input.header . 32
run.pgs.regression . 33
write.apply.polygenic.score.output.to.file . 34

Index 35

analyze.pgs.binary.predictiveness

Analyze PGS Predictiveness for Binary Phenotypes

Description

This function performs logistic regression to evaluate the predictiveness of polygenic scores for
binary or continuous phenotypes. For continuous phenotypes, it converts them to binary based on a
specified cutoff threshold. It calculates and returns AUC, Odds Ratios (OR), and p-values for each
PGS. Corresponding ROC curves are plotted automatically.

Usage

analyze.pgs.binary.predictiveness(
pgs.data,
pgs.columns,
phenotype.columns,
covariate.columns = NULL,
phenotype.type = "binary",
cutoff.threshold = NULL,
output.dir = NULL,
filename.prefix = NULL,

analyze.pgs.binary.predictiveness 3

file.extension = "png",
width = 8,
height = 8,
xaxes.cex = 1.5,
yaxes.cex = 1.5,
titles.cex = 1.5

)

Arguments

pgs.data A data frame containing the PGS, phenotype, and covariate columns.

pgs.columns A character vector specifying the names of the PGS columns in pgs.data to be
analyzed. All specified columns must be numeric.

phenotype.columns

A character vector specifying the names of the phenotype columns in data to
be analyzed. If binary phenotypes are specified, they must be factors with two
levels (0 and 1).

covariate.columns

A character vector specifying the names of covariate columns in data to be
included in the regression model. Default is NULL.

phenotype.type A character string specifying the type of phenotype. Must be either ’continuous’
or ’binary’. All provided phenotype columns must match this type.

cutoff.threshold

A numeric value or a named list specifying the cutoff threshold for converting
continuous phenotypes to binary. If a named list, it must contain entries for each
continuous phenotype.

output.dir A character string specifying the directory where the ROC plots will be saved.
If NULL, no plots are saved.

filename.prefix

A character string specifying the prefix for the output filenames. If NULL, de-
faults to ’ApplyPolygenicScore-Plot’.

file.extension A character string specifying the file extension for the output plots. Default is
’png’.

width Numeric value specifying the width of the output plot in inches.

height Numeric value specifying the height of the output plot in inches.

xaxes.cex Numeric size for all x-axis labels.

yaxes.cex Numeric size for all y-axis labels.

titles.cex Numeric size for all plot titles.

Value

A list containing a data frame of logistic regression results and a plot object of corresponding ROC
curves.

Output Formatting

results.df A data frame with columns:

4 analyze.pgs.binary.predictiveness

• phenotype: Name of the phenotype column.
• PGS: Name of the PGS column.
• AUC: Area Under the Reciever Operator Curve.
• OR: Odds Ratio for the PGS from logistic regression.
• OR.Lower.CI: Lower 95
• OR.Upper.CI: Upper 95
• p.value: P-value for the PGS coefficient.

Values for AUC, OR, OR.Lower.CI, OR.Upper.CI, and p.value may be NA if
model fitting or ROC calculation fails (e.g., due to no complete cases, no vari-
ance in PGS, or ROC calculation errors).

roc.plot A multipanelplot object (from BoutrosLab.plotting.general) if output.dir
is NULL, otherwise NULL if plots are saved to file.

Each phenotype is plotted in a separate panel, with ROC curves for each PGS specified in pgs.columns.

Examples

set.seed(100);

pgs.data <- data.frame(
PGS = rnorm(100, 0, 1),
continuous.phenotype = rnorm(100, 2, 1),
binary.phenotype = sample(c(0, 1), 100, replace = TRUE),
covariate1 = rnorm(100, 0, 1)
);

temp.dir <- tempdir();

Basic analysis with binary phenotype
analyze.pgs.binary.predictiveness(

pgs.data,
output.dir = temp.dir,
filename.prefix = 'basic-plot',
pgs.columns = 'PGS',
phenotype.columns = 'binary.phenotype',
phenotype.type = 'binary',
covariate.columns = 'covariate1',
width = 6,
height = 6
);

Analysis with continuous phenotype and cutoff threshold
analyze.pgs.binary.predictiveness(

pgs.data,
output.dir = temp.dir,
filename.prefix = 'continuous-plot',
pgs.columns = 'PGS',
phenotype.columns = 'continuous.phenotype',
phenotype.type = 'continuous',
cutoff.threshold = 1.5, # Convert to binary using this threshold
covariate.columns = NULL,

apply.polygenic.score 5

width = 6,
height = 6
);

apply.polygenic.score Apply polygenic score to VCF data

Description

Apply a polygenic score model to VCF data.

Usage

apply.polygenic.score(
vcf.data,
vcf.long.format = FALSE,
pgs.weight.data,
phenotype.data = NULL,
phenotype.analysis.columns = NULL,
correct.strand.flips = TRUE,
remove.ambiguous.allele.matches = FALSE,
max.strand.flips = 0,
remove.mismatched.indels = FALSE,
output.dir = NULL,
file.prefix = NULL,
missing.genotype.method = "mean.dosage",
use.external.effect.allele.frequency = FALSE,
n.percentiles = NULL,
analysis.source.pgs = NULL,
validate.inputs.only = FALSE

)

Arguments

vcf.data VCF genotype data as formatted by import.vcf(). Two formats are accepted:
wide format (a list of elements named genotyped.alleles and vcf.fixed.fields)
or long format(a data frame). See vcf.import for more details.

vcf.long.format

A logical indicating whether vcf.data is provided in long format. Default is
FALSE.

pgs.weight.data

A data.frame containing PGS weight data as formatted by import.pgs.weight.file().

phenotype.data A data.frame containing phenotype data. Must have an Indiv column matching
vcf.data. Default is NULL.

6 apply.polygenic.score

phenotype.analysis.columns

A character vector of phenotype columns from phenotype.data to analyze in a
regression analsyis. Default is NULL. Phenotype variables are automatically clas-
sified as continuous, binary, or neither based on data type and number of unique
values. The calculated PGS is associated with each phenotype variable using
linear or logistic regression for continuous or binary phenotypes, respectively.
See run.pgs.regression for more details. If no phenotype.analysis.columns
are provided, no regression analysis is performed.

correct.strand.flips

A logical indicating whether to check PGS weight data/VCF genotype data
matches for strand flips and correct them. Default is TRUE. The PGS catalog
standard column other_allele in pgs.weight.data is required for this check.

remove.ambiguous.allele.matches

A logical indicating whether to remove PGS variants with ambiguous allele
matches between PGS weight data and VCF genotype data. Default is FALSE.
The PGS catalog standard column other_allele in pgs.weight.data is re-
quired for this check.

max.strand.flips

An integer indicating the number of unambiguous strand flips that need to be
detected in order to discard all variants with ambiguous allele matches. Only
applies if return.ambiguous.as.missing == TRUE. Default is 0 which means
that all ambiguous variants are removed regardless of the status of any other
variant.

remove.mismatched.indels

A logical indicating whether to remove indel variants that are mismatched be-
tween PGS weight data and VCF genotype data. Default is FALSE. The PGS
catalog standard column other_allele in pgs.weight.data is required for
this check.

output.dir A character string indicating the directory to write output files. Separate files
are written for per-sample pgs results and optional regression results. Files are
tab-separate .txt files. Default is NULL in which case no files are written.

file.prefix A character string to prepend to the output file names. Default is NULL.
missing.genotype.method

A character string indicating the method to handle missing genotypes. Options
are "mean.dosage", "normalize", or "none". Default is "mean.dosage".

use.external.effect.allele.frequency

A logical indicating whether to use an external effect allele frequency for calcu-
lating mean dosage when handling missing genotypes. Default is FALSE. Pro-
vide allele frequency as a column is pgs.weight.data named allelefrequency_effect.

n.percentiles An integer indicating the number of percentiles to calculate for the PGS. Default
is NULL.

analysis.source.pgs

A character string indicating the source PGS for percentile calculation and re-
gression analyses. Options are "mean.dosage", "normalize", or "none". When
not specified, defaults to missing.genotype.method choice and if more than
one PGS missing genotype method is chosen, calculation defaults to the first
selection.

apply.polygenic.score 7

validate.inputs.only

A logical indicating whether to only perform input data validation checks with-
out running PGS application. If no errors are triggered, a message is printed and
TRUE is returned. Default is FALSE.

Value

A list containing per-sample PGS output and per-phenotype regression output if phenotype analysis
columns are provided.

Output Structure

The outputed list contains the following elements:

• pgs.output: A data.frame containing the PGS per sample and optional phenotype data.

• regression.output: A data.frame containing the results of the regression analysis if pheno-
type.analysis.columns are provided, otherwise NULL.

pgs.output columns:

• Indiv: A character string indicating the sample ID.

• PGS: A numeric vector indicating the PGS per sample. (only if missing.genotype.method
includes "none")

• PGS.with.normalized.missing: A numeric vector indicating the PGS per sample with
missing genotypes normalized. (only if missing.genotype.method includes "normalize")

• PGS.with.replaced.missing: A numeric vector indicating the PGS per sample with missing
genotypes replaced by mean dosage. (only if missing.genotype.method includes "mean.dosage")

• percentile: A numeric vector indicating the percentile rank of the PGS.

• decile: A numeric vector indicating the decile rank of the PGS.

• quartile: A numeric vector indicating the quartile rank of the PGS.

• percentile.X: A numeric vector indicating the user-specified percentile rank of the PGS
where "X" is substituted by n.percentiles. (only if n.percentiles is specified)

• n.missing.genotypes: A numeric vector indicating the number of missing genotypes per
sample.

• percent.missing.genotypes: A numeric vector indicating the percentage of missing geno-
types per sample.

• All columns in phenotype.data if provided.

regression.output columns:

• phenotype: A character vector of phenotype names.

• model: A character vector indicating the regression model used. One of "logistic.regression"
or "linear.regression".

• beta: A numeric vector indicating the beta coefficient of the regression analysis.

• se: A numeric vector indicating the standard error of the beta coefficient.

• p.value: A numeric vector indicating the p-value of the beta coefficient.

8 apply.polygenic.score

• r.squared: A numeric vector indicating the r-squared value of linear regression analysis. NA
for logistic regression.

• AUC: A numeric vector indicating the area under the curve of logistic regression analysis. NA
for linear regression.

PGS Calculation

PGS for each individual i is calculated as the sum of the product of the dosage and beta coefficient
for each variant in the PGS:

PGSi =

M∑
m=1

(βm × dosageim)

Where m is a PGS component variant out of a total M variants.

Missing Genotype Handling

VCF genotype data are matched to PGS data by chromosome and position. If a SNP cannot be
matched by genomic coordinate, an attempt is made to match by rsID (if available). If a SNP from
the PGS weight data is not found in the VCF data after these two matching attempts, it is considered
a cohort-wide missing variant.

Missing genotypes (in individual samples) among successfully matched variants are handled by
three methods:

none: Missing genotype dosages are excluded from the PGS calculation. This is equivalent to
assuming that all missing genotypes are homozygous for the non-effect allele, resulting in a dosage
of 0.

normalize: Missing genotypes are excluded from score calculation but the final score is normalized
by the number of non-missing alleles. The calculation assumes a diploid genome:

PGSi =

∑
(βm × dosageim)

Pi ∗Mnon−missing

Where P is the ploidy and has the value 2 and Mnon−missing is the number of non-missing geno-
types.

mean.dosage: Missing genotype dosages are replaced by the mean population dosage of the variant
which is calculated as the product of the effect allele frequency EAF and the ploidy of a diploid
genome:

dosagek = EAFk ∗ P

where k is a PGS component variant that is missing in between 1 and n-1 individuals in the cohort
and P = ploidy = 2 This dosage calculation holds under assumptions of Hardy-Weinberg equilib-
rium. By default, the effect allele frequency is calculated from the provided VCF data. For variants
that are missing in all individuals (cohort-wide), dosage is assumed to be zero (homozygous non-
reference) for all individuals. An external allele frequency can be provided in the pgs.weight.data
as a column named allelefrequency_effect and by setting use.external.effect.allele.frequency
to TRUE.

Multiallelic Site Handling

If a PGS weight file provides weights for multiple effect alleles, the appropriate dosage is calculated
for the alleles that each individual carries. It is assumed that multiallelic variants are encoded in
the same row in the VCF data. This is known as "merged" format. Split multiallelic sites are not

apply.polygenic.score 9

accepted. VCF data can be formatted to merged format using external tools for VCF file manipula-
tion.

Allele Mismatch Handling Variants from the PGS weight data are merged with records in the
VCF data by genetic coordinate. After the merge is complete, there may be cases where the VCF
reference (REF) and alternative (ALT) alleles do not match their conventional counterparts in the
PGS weight data (other allele and effect allele, respectively). This is usually caused by a strand
flip: the variant in question was called against opposite DNA reference strands in the PGS training
data and the VCF data. Strand flips can be detected and corrected by flipping the affected allele to
its reverse complement. apply.polygenic.score uses assess.pgs.vcf.allele.match to assess
allele concordance, and is controlled through the following arguments:

• correct.strand.flips: When TRUE, detected strand flips are corrected by flipping the af-
fected value in the effect_allele column prior to dosage calling.

• remove.ambiguous.allele.matches: Corresponds to the return.ambiguous.as.missing
argument in assess.pgs.vcf.allele.match. When TRUE, non-INDEL allele mismatches
that cannot be resolved (due to palindromic alleles or causes other than strand flips) are re-
moved by marking the affected value in the effect_allele column as missing prior to dosage
calling and missing genotype handling. The corresponding dosage is set to NA and the variant
is handled according to the chosen missing genotype method.

• max.strand.flips: This argument only applies when remove.ambiguous.allele.matches
is on and modifies its behavior. In cases where none or very few unambiguous strand flips
are detected, it is likely that all ambiguous allele matches are simply palindromic effect size
flips. This option facilitates handling of ambiguous allele matches conditional on a max-
imum number of unambiguous strand flips. Variants with ambiguous strand flips will be
marked as missing only if the number of unambiguous strand flips is greater than or equal
to max.strand.flips.

• remove.mismatched.indels: Corresponds to the return.indels.as.missing argument in
assess.pgs.vcf.allele.match. When TRUE, INDEL allele mismatches (which cannot be
assessed for strand flips) are removed by marking the affected value in the effect_allele
column as missing prior to dosage calling and missing genotype handling. The corresponding
dosage is set to NA and the variant is handled according to the chosen missing genotype
method.

Note that an allele match assessment requires the presence of both the other_allele and effect_allele
in the PGS weight data. The other_allele column is not required by the PGS Catalog, and so is
not always available.

Examples

Example VCF
vcf.path <- system.file(

'extdata',
'HG001_GIAB.vcf.gz',
package = 'ApplyPolygenicScore',
mustWork = TRUE
);

vcf.import <- import.vcf(vcf.path, long.format = TRUE);

Example pgs weight file

10 apply.polygenic.score

pgs.weight.path <- system.file(
'extdata',
'PGS000662_hmPOS_GRCh38.txt.gz',
package = 'ApplyPolygenicScore',
mustWork = TRUE
);

pgs.import <- import.pgs.weight.file(pgs.weight.path);

pgs.data <- apply.polygenic.score(
vcf.data = vcf.import$split.wide.vcf.matrices,
pgs.weight.data = pgs.import$pgs.weight.data,
missing.genotype.method = 'none'
);

Use long format
pgs.data <- apply.polygenic.score(

vcf.data = vcf.import$combined.long.vcf.df$dat,
vcf.long.format = TRUE,
pgs.weight.data = pgs.import$pgs.weight.data,
missing.genotype.method = 'none'
);

Specify different methods for handling missing genotypes
pgs.import$pgs.weight.data$allelefrequency_effect <- rep(0.5, nrow(pgs.import$pgs.weight.data));
pgs.data <- apply.polygenic.score(

vcf.data = vcf.import$split.wide.vcf.matrices,
pgs.weight.data = pgs.import$pgs.weight.data,
missing.genotype.method = c('none', 'mean.dosage', 'normalize'),
use.external.effect.allele.frequency = TRUE
);

Specify allele mismatch handling
pgs.data <- apply.polygenic.score(

vcf.data = vcf.import$split.wide.vcf.matrices,
pgs.weight.data = pgs.import$pgs.weight.data,
correct.strand.flips = TRUE,
remove.ambiguous.allele.matches = TRUE,
remove.mismatched.indels = FALSE
);

Provide phenotype data for basic correlation analysis
n.samples <- length(colnames(vcf.import$split.wide.vcf.matrices$genotyped.alleles))
phenotype.data <- data.frame(

Indiv = colnames(vcf.import$split.wide.vcf.matrices$genotyped.alleles),
continuous.phenotype = rnorm(n.samples),
binary.phenotype = sample(

c('a', 'b'),
n.samples,
replace = TRUE
)

);

pgs.data <- apply.polygenic.score(

assess.pgs.vcf.allele.match 11

vcf.data = vcf.import$split.wide.vcf.matrices,
pgs.weight.data = pgs.import$pgs.weight.data,
phenotype.data = phenotype.data
);

Only run validation checks on input data and report back
apply.polygenic.score(

vcf.data = vcf.import$split.wide.vcf.matrices,
pgs.weight.data = pgs.import$pgs.weight.data,
validate.inputs.only = TRUE
);

assess.pgs.vcf.allele.match

Assess PGS allele match to VCF allele

Description

Assess whether PGS reference and effect alleles match provided VCF reference and alternative
alleles. Mismatches are checked for potential switching of effect and reference PGS alleles (cases
where the effect allele is the REF VCF allele) and are evaluated for DNA strand flips (by flipping
the PGS alleles). INDEL alleles are not supported for strand flip assessment.

Usage

assess.pgs.vcf.allele.match(
vcf.ref.allele,
vcf.alt.allele,
pgs.ref.allele,
pgs.effect.allele,
return.indels.as.missing = FALSE,
return.ambiguous.as.missing = FALSE,
max.strand.flips = 0

)

Arguments

vcf.ref.allele A character vector of singular VCF reference (REF) alleles.

vcf.alt.allele A character vector of VCF alternative (ALT) alleles. Multiple alleles at a multi-
allelic site must be separated by commas.

pgs.ref.allele A character vector of singular PGS reference alleles aka "non-effect" or "other"
alleles.

pgs.effect.allele

A character vector of singular PGS effect alleles.
return.indels.as.missing

A logical value indicating whether to return NA for INDEL alleles with detected
mismatches. Default is FALSE.

12 assess.pgs.vcf.allele.match

return.ambiguous.as.missing

A logical value indicating whether to return NA for ambiguous cases where
both a strand flip and effect switch are possible, or no strand flip is detected and
a mismatch cannot be resolved. Default is FALSE.

max.strand.flips

An integer indicating the number of non-ambiguous strand flips that must be
present to implement the discarding all allele matches labeled "ambiguous_flip".
Only applies if return.ambiguous.as.missing == TRUE. Defaults to 0, mean-
ing that no strand flips are allowed. Allele matches labeled "unresolved_mismatch"
are not affected by this parameter.

Value

A list containing the match assessment, a new PGS effect allele, and a new PGS other allele.

Output Structure
The outputed list contains the following elements:

• match.status: A character vector indicating the match status for each pair of allele pairs.
Possible values are default_match, effect_switch, strand_flip, effect_switch_with_strand_flip,
ambiguous_flip, indel_mismatch, and unresolved_mismatch.

• new.pgs.effect.allele: A character vector of new PGS effect alleles based on the match
status. If the match status is default_match, effect_switch or missing_allele, the origi-
nal PGS effect allele is returned. If the match status is strand_flip or effect_switch_with_strand_flip
the flipped PGS effect allele is returned. If the match status is ambiguous_flip, indel_mismatch,
or unresolved_mismatch, the return value is either the original allele or NA as dictated by the
return.indels.as.missing, return.ambiguous.as.missing, and max.strand.flips pa-
rameters.

• new.pgs.other.allele: A character vector of new PGS other alleles based on the match
status, following the same logic as new.pgs.effect.allele.

The match.status output indicates the following:

• default_match: The default PGS reference allele matches the VCF REF allele and the default
PGS effect allele matches one of the VCF ALT alleles.

• effect_switch: The PGS effect allele matches the VCF REF allele and the PGS reference
allele matches one of the VCF ALT alleles.

• strand_flip: The PGS reference and effect alleles match their respective VCF pairs when
flipped.

• effect_switch_with_strand_flip: The PGS effect allele matches the VCF REF allele and
the PGS reference allele matches one of the VCF ALT alleles when flipped.

• ambiguous_flip: Both an effect switch and a strand flip have been detected. This is an
ambiguous case caused by palindromic SNPs.

• indel_mismatch: A mismatch was detected between pairs of alleles where at least one was
an INDEL. INDEL alleles are not supported for strand flip assessment.

• unresolved_mismatch: A mismatch was detected between pairs of non-INDEL alleles that
could not be resolved by an effect switch or flipping the PGS alleles.

• missing_allele: One of the four alleles is missing, making it impossible to assess the match.

check.pgs.weight.columns 13

Examples

Example data demonstrating the following cases in each vector element:
1. no strand flips
2. effect allele switch
3. strand flip
4. effect allele switch AND strand flip
5. palindromic (ambiguous) alleles
6. unresolved mismatch
vcf.ref.allele <- c('A', 'A', 'A', 'A', 'A', 'A');
vcf.alt.allele <- c('G', 'G', 'G', 'G', 'T', 'G');
pgs.ref.allele <- c('A', 'G', 'T', 'C', 'T', 'A');
pgs.effect.allele <- c('G', 'A', 'C', 'T', 'A', 'C');
assess.pgs.vcf.allele.match(vcf.ref.allele, vcf.alt.allele, pgs.ref.allele, pgs.effect.allele);

check.pgs.weight.columns

Check PGS weight file columns

Description

Check that a PGS weight file contains the required columns for PGS application with apply.polygenic.score.

Usage

check.pgs.weight.columns(pgs.weight.colnames, harmonized = TRUE)

Arguments

pgs.weight.colnames

A character vector of column names.

harmonized A logical indicating whether the presence of harmonized columns should be
checked.

Value

A logical indicating whether the file contains the required columns.

14 combine.pgs.bed

combine.pgs.bed Combine PGS BED files

Description

Merge overlapping PGS coordinates in multiple BED files.

Usage

combine.pgs.bed(
pgs.bed.list,
add.annotation.data = FALSE,
annotation.column.index = 4,
slop = 0

)

Arguments

pgs.bed.list A named list of data.frames containing PGS coordinates in BED format.
add.annotation.data

A logical indicating whether an additional annotation data column should be
added to the annotation column.

annotation.column.index

An integer indicating the index of the column in the data frames in pgs.bed.list
that should be added to the annotation column.

slop An integer indicating the number of base pairs to add to the BED interval on
either side.

Value

A data.frame containing the merged PGS coordinates in BED format with an extra annotation col-
umn containing the name of the PGS and data from one additional column optionally selected by
the user.

Examples

bed1 <- data.frame(
chr = c(1, 2, 3),
start = c(1, 2, 3),
end = c(2, 3, 4),
annotation = c('a', 'b', 'c')
);

bed2 <- data.frame(
chr = c(1, 2, 3),
start = c(1, 20, 30),
end = c(2, 21, 31),
annotation = c('d', 'e', 'f')
);

combine.vcf.with.pgs 15

bed.input <- list(bed1 = bed1, bed2 = bed2);
combine.pgs.bed(bed.input);

combine.vcf.with.pgs Combine VCF with PGS

Description

Match PGS SNPs to corresponding VCF information by genomic coordinates or rsID using a merge
operation.

Usage

combine.vcf.with.pgs(vcf.data, pgs.weight.data)

Arguments

vcf.data A data frame/table containing VCF data. Required columns: CHROM, POS.
pgs.weight.data

A data frame/table containing PGS data. Required columns: CHROM, POS.

Value

A list containing a data.table of merged VCF and PGS data and a data.table of PGS SNPs missing
from the VCF.

A primary merge is first performed on chromosome and base pair coordinates. For SNPs that could
not be matched in the first mergs, a second merge is attempted by rsID if available. This action can
account for short INDELs that can have coordinate mismatches between the PGS and VCF data.
The merge is a left outer join: all PGS SNPs are kept as rows even if they are missing from the VCF,
and all VCF SNPs that are not a component of the PGS are dropped. If no PGS SNPs are present in
the VCF, the function will terminate with an error.

Examples

Example VCF
vcf.path <- system.file(

'extdata',
'HG001_GIAB.vcf.gz',
package = 'ApplyPolygenicScore',
mustWork = TRUE
);

vcf.import <- import.vcf(vcf.path);

Example pgs weight file
pgs.weight.path <- system.file(

'extdata',
'PGS000662_hmPOS_GRCh38.txt.gz',
package = 'ApplyPolygenicScore',

16 convert.alleles.to.pgs.dosage

mustWork = TRUE
);

pgs.import <- import.pgs.weight.file(pgs.weight.path);

merge.data <- combine.vcf.with.pgs(
vcf.data = vcf.import$split.wide.vcf.matrices$vcf.fixed.fields,
pgs.weight.data = pgs.import$pgs.weight.data
);

convert.allele.frequency.to.dosage

Convert allele frequency to mean dosage

Description

Convert a population allele frequency to a mean dosage for that allele.

Usage

convert.allele.frequency.to.dosage(allele.frequency)

Arguments

allele.frequency

A numeric vector of allele frequencies.

Value

A numeric vector of mean dosages for the allele frequencies.

Examples

allele.frequency <- seq(0.1, 0.9, 0.1);
convert.allele.frequency.to.dosage(allele.frequency);

convert.alleles.to.pgs.dosage

Convert alleles to dosage

Description

Convert genotype calls in the form of witten out alleles (e.g. ’A/T’) to dosages (0, 1, 2) based on
provided risk alleles from a PGS.

Usage

convert.alleles.to.pgs.dosage(called.alleles, risk.alleles)

convert.pgs.to.bed 17

Arguments

called.alleles A vector of genotypes in allelic notation separated by a slash or pipe.

risk.alleles A vector of risk alleles from a polygenic score corresponding to each genotype
(by locus) in called.alleles.

Value

A vector of dosages corresponding to each genotype in called.alleles. Hemizygous genotypes (one
allele e.g. ’A’) are counted as 1.

Examples

called.alleles <- c('A/A', 'A/T', 'T/T');
risk.alleles <- c('T', 'T', 'T');
convert.alleles.to.pgs.dosage(called.alleles, risk.alleles);

convert.pgs.to.bed Convert PGS data to BED format

Description

Convert imported and formatted PGS compnent SNP coordinate data to BED format.

Usage

convert.pgs.to.bed(
pgs.weight.data,
chr.prefix = TRUE,
numeric.sex.chr = FALSE,
slop = 0

)

Arguments

pgs.weight.data

A data.frame containing SNP coordinate data with standardized CHROM and
POS columns.

chr.prefix A logical indicating whether the ’chr’ prefix should be used when formatting
chromosome name.

numeric.sex.chr

A logical indicating whether the sex chromosomes should be formatted numer-
ically, as opposed to alphabetically.

slop An integer indicating the number of base pairs to add to the BED interval on
either side.

18 create.pgs.boxplot

Value

A data.frame containing the PGS component SNP coordinate data in BED format and any other
columns provided in pgs.weight.data.

Examples

pgs.weight.data <- data.frame(
CHROM = c('chr1', 'chrX'),
POS = c(10, 20)
);

convert.pgs.to.bed(pgs.weight.data);

Switch between different chromosome notations
convert.pgs.to.bed(pgs.weight.data, chr.prefix = FALSE, numeric.sex.chr = TRUE);

Add slop to BED intervals
convert.pgs.to.bed(pgs.weight.data, slop = 10);

create.pgs.boxplot Plot PGS Boxplots

Description

Plot boxplots of PGS data outputted by apply.polygenic.score. If phenotype columns are pro-
vided, multiple boxplots are plotted for automatically detected categories for each categorical vari-
able.

Usage

create.pgs.boxplot(
pgs.data,
pgs.columns = NULL,
phenotype.columns = NULL,
add.stripplot = TRUE,
jitter.factor = 1,
output.dir = NULL,
filename.prefix = NULL,
file.extension = "png",
tidy.titles = FALSE,
alpha = 0.5,
width = 10,
height = 10,
xaxes.cex = 1.5,
yaxes.cex = 1.5,
titles.cex = 1.5,
border.padding = 1

)

create.pgs.boxplot 19

Arguments

pgs.data data.frame PGS data as formatted by apply.polygenic.score(). Required
columns are at least one of PGS, PGS.with.replaced.missing, or PGS.with.normalized.missing.
This function is designed to work with the output of apply.polygenic.score().

pgs.columns character vector of column names indicating which columns in pgs.data to plot
as PGSs. If NULL, defaults to recognized PGS columns: PGS, PGS.with.replaced.missing,
and PGS.with.normalized.missing.

phenotype.columns

character vector of phenotype columns in pgs.data to plot (optional)

add.stripplot logical whether to add a stripplot to the boxplot, defaults to TRUE

jitter.factor numeric factor by which to scale the jitter (noise) applied to stripplot points,
defaults to 1

output.dir character directory to save output plots
filename.prefix

character prefix for output filenames

file.extension character file extension for output plots

tidy.titles logical whether to reformat PGS plot titles to remove periods

alpha numeric alpha value for stripplot points, defaults to 0.5

width numeric width of output plot in inches

height numeric height of output plot in inches

xaxes.cex numeric size for all x-axis labels

yaxes.cex numeric size for all y-axis labels

titles.cex numeric size for all plot titles

border.padding numeric padding for plot borders

Value

If no output directory is provided, a multipanel lattice plot object is returned, otherwise a plot is
written to the indicated path and NULL is returned.

Examples

set.seed(100);
pgs.data <- data.frame(

PGS = rnorm(100, 0, 1)
);

temp.dir <- tempdir();

Basic Plot
create.pgs.boxplot(

pgs.data,
output.dir = temp.dir,
filename.prefix = 'basic-plot',
width = 6,
height = 6

20 create.pgs.density.plot

);

Plot multiple PGS outputs
pgs.data$PGS.with.normalized.missing <- rnorm(100, 1, 1);
create.pgs.boxplot(pgs.data, output.dir = temp.dir);

Plot non-default PGS columns
pgs.data$PGS.custom <- rnorm(100, 2, 1);
create.pgs.boxplot(pgs.data, pgs.columns = 'PGS.custom', output.dir = temp.dir);
Plot phenotype categories
pgs.data$sex <- sample(c('male', 'female'), 100, replace = TRUE);

create.pgs.boxplot(
pgs.data,
output.dir = temp.dir,
filename.prefix = 'multiple-pgs',
phenotype.columns = 'sex'
);

Plot multiple phenotypes
pgs.data$letters <- sample(letters[1:5], 100, replace = TRUE);

create.pgs.boxplot(
pgs.data,
output.dir = temp.dir,
filename.prefix = 'multiple-phenotypes',
phenotype.columns = c('sex', 'letters')
);

create.pgs.density.plot

Plot PGS Density

Description

Plot density curves of PGS data outputted by apply.polygenic.score. If phenotype columns
are provided, multiple density curves are plotted for automatically detected categories for each
categorical variable.

Usage

create.pgs.density.plot(
pgs.data,
pgs.columns = NULL,
phenotype.columns = NULL,
output.dir = NULL,
filename.prefix = NULL,
file.extension = "png",

create.pgs.density.plot 21

tidy.titles = FALSE,
width = 10,
height = 10,
xaxes.cex = 1.5,
yaxes.cex = 1.5,
titles.cex = 1.5,
key.cex = 1,
border.padding = 1

)

Arguments

pgs.data data.frame PGS data as formatted by apply.polygenic.score(). Required
columns are at least one of PGS, PGS.with.replaced.missing, or PGS.with.normalized.missing.
This function is designed to work with the output of apply.polygenic.score().

pgs.columns character vector of column names indicating which columns in pgs.data to plot
as PGSs. If NULL, defaults to recognized PGS columns: PGS, PGS.with.replaced.missing,
and PGS.with.normalized.missing.

phenotype.columns

character vector of phenotype columns in pgs.data to plot (optional)

output.dir character directory to save output plots
filename.prefix

character prefix for output filenames

file.extension character file extension for output plots

tidy.titles logical whether to reformat PGS plot titles to remove periods

width numeric width of output plot in inches

height numeric height of output plot in inches

xaxes.cex numeric size for all x-axis labels

yaxes.cex numeric size for all y-axis labels

titles.cex numeric size for all plot titles

key.cex numeric size of color key legend

border.padding numeric padding for plot borders

Value

If no output directory is provided, a multipanel lattice plot object is returned, otherwise a plot is
written to the indicated path and NULL is returned.

Examples

set.seed(100);
pgs.data <- data.frame(

PGS = rnorm(100, 0, 1)
);

temp.dir <- tempdir();

22 create.pgs.rank.plot

Basic Plot
create.pgs.density.plot(

pgs.data,
output.dir = temp.dir,
filename.prefix = 'basic-plot',
width = 6,
height = 6
);

Plot multiple PGS outputs
pgs.data$PGS.with.normalized.missing <- rnorm(100, 1, 1);
create.pgs.density.plot(pgs.data, output.dir = temp.dir);

Plot non-default PGS columns
pgs.data$PGS.custom <- rnorm(100, 2, 1);
create.pgs.density.plot(pgs.data, pgs.columns = 'PGS.custom', output.dir = temp.dir);

Plot phenotype categories
pgs.data$sex <- sample(c('male', 'female'), size = 100, replace = TRUE);

create.pgs.density.plot(
pgs.data,
output.dir = temp.dir,
filename.prefix = 'multiple-pgs',
phenotype.columns = 'sex'
);

Plot multiple phenotypes
pgs.data$letters <- sample(letters[1:5], size = 100, replace = TRUE);

create.pgs.density.plot(
pgs.data,
output.dir = temp.dir,
filename.prefix = 'multiple-phenotypes',
phenotype.columns = c('sex', 'letters')
);

create.pgs.rank.plot Plot PGS Rank

Description

Plot PGS percentile rank of each sample outputted by apply.polygenic.score() as a barplot, plot
missing genotypes if any are present, plot corresponding decile and quartile markers as a heatmap,
optionally plot phenotype covariates as color bars.

create.pgs.rank.plot 23

Usage

create.pgs.rank.plot(
pgs.data,
phenotype.columns = NULL,
missing.genotype.style = "count",
categorical.palette = NULL,
binary.palette = NULL,
output.dir = NULL,
filename.prefix = NULL,
file.extension = "png",
width = 8,
height = 8,
xaxis.cex = 1.2,
yaxis.cex = 1,
titles.cex = 1.2,
border.padding = 1

)

Arguments

pgs.data data.frame PGS data as formatted by apply.polygenic.score() Required columns:
Indiv, percentile, decile, quartile, n.missing.genotypes, percent.missing.genotypes,
and optionally user-defined percentiles and phenotype covariates. This function
is designed to work with the output of the function apply.polygenic.score().

phenotype.columns

character vector of column names in pgs.data containing phenotype covariates
to plot as color bars. Default is NULL.

missing.genotype.style

character style of missing genotype barplot. Default is "count". Options are
"count" or "percent".

categorical.palette

character vector of colors to use for categorical phenotype covariates. Default is
NULL in which case the default palette is used, which contains 12 unique colors.
If the number of unique categories exceeds the number of colors in the color
palette, an error will be thrown.

binary.palette character vector of colors to use for binary and continuous phenotype covariates.
Each color is contrasted with white to create a color ramp or binary categories.
Default is NULL in which case the default palette is used, which contains 9 unique
colors paired with white. If the number of binary and continuous phenotype
covariates exceeds the number of colors in the color palette, an error will be
thrown.

output.dir character directory path to write plot to file. Default is NULL in which case the
plot is returned as lattice multipanel object.

filename.prefix

character prefix for plot filename.

file.extension character file extension for plot file. Default is "png".

24 create.pgs.rank.plot

width numeric width of plot in inches.

height numeric height of plot in inches.

xaxis.cex numeric size of x-axis labels.

yaxis.cex numeric size of y-axis labels.

titles.cex numeric size of plot titles.

border.padding numeric padding around plot border.

Value

If no output directory is provided, a multipanel lattice plot object is returned, otherwise a plot is
written to the indicated path and NULL is returned.

For clarity, certain plot aspects change when sample size exceeds 50:

• x-axis labels are no longer displayed

• missing (NA) values are not labeled with text in heatmaps but are color-coded with a legend

Colors for continuous and binary phenotypes are chosen from the binary color palettes in BoutrosLab.plotting.general::default.colours().
Colors for categorical phenotypes are chosen by default from the qualitative color palette in BoutrosLab.plotting.general::default.colours().

Examples

set.seed(200);
percentiles <- get.pgs.percentiles(rnorm(200, 0, 1));
pgs.data <- data.frame(

Indiv = paste0('sample', 1:200),
percentile = percentiles$percentile,
decile = percentiles$decile,
quartile = percentiles$quartile,
n.missing.genotypes = sample(1:10, 200, replace = TRUE),
percent.missing.genotypes = sample(1:10, 200, replace = TRUE) / 100,
continuous.pheno = rnorm(200, 1, 1),
categorical.pheno = sample(letters[1:5], 200, replace = TRUE),
binary.pheno = sample(c(0,1), 200, replace = TRUE)
);

temp.dir <- tempdir();

create.pgs.rank.plot(
pgs.data,
phenotype.columns = c('continuous.pheno', 'categorical.pheno', 'binary.pheno'),
missing.genotype.style = 'percent',
output.dir = temp.dir,
filename.prefix = 'example-rank-plot'
);

create.pgs.with.continuous.phenotype.plot 25

create.pgs.with.continuous.phenotype.plot

Plot PGS Scatterplots

Description

Create scatterplots for PGS data outputed by apply.polygenic.score() with continuous pheno-
type variables

Usage

create.pgs.with.continuous.phenotype.plot(
pgs.data,
pgs.columns = NULL,
phenotype.columns,
hexbin.threshold = 1000,
hexbin.colour.scheme = NULL,
hexbin.colourkey = TRUE,
hexbin.colourcut = seq(0, 1, length = 11),
hexbin.mincnt = 1,
hexbin.maxcnt = NULL,
hexbin.xbins = 30,
hexbin.aspect = 1,
output.dir = NULL,
filename.prefix = NULL,
file.extension = "png",
tidy.titles = FALSE,
compute.correlation = TRUE,
corr.legend.corner = c(0, 1),
corr.legend.cex = 1.5,
include.origin = FALSE,
width = 10,
height = 10,
xaxes.cex = 1.5,
yaxes.cex = 1.5,
titles.cex = 1.5,
point.cex = 0.75,
border.padding = 1

)

Arguments

pgs.data data.frame PGS data as formatted by apply.polygenic.score(). Required
columns are at least one of PGS, PGS.with.replaced.missing, or PGS.with.normalized.missing,
and at least one continuous phenotype column. This function is designed to work
with the output of apply.polygenic.score().

26 create.pgs.with.continuous.phenotype.plot

pgs.columns character vector of column names indicating which columns in pgs.data to plot
as PGSs. If NULL, defaults to recognized PGS columns: PGS, PGS.with.replaced.missing,
and PGS.with.normalized.missing.

phenotype.columns

character vector of continuous phenotype column names in pgs.data to plot
hexbin.threshold

numeric threshold (exclusive) for cohort size at which to switch from scatterplot
to hexbin plot.

hexbin.colour.scheme

character vector of colors for hexbin plot bins. Default is NULL which uses
gray/black.

hexbin.colourkey

logical whether a legend should be drawn for a hexbinplot, defaults to TRUE.
hexbin.colourcut

numeric vector of values covering [0, 1] that determine hexagon colour class
boundaries and hexagon legend size boundaries. Alternatively, an integer (<=
hexbin.maxcnt) specifying the number of equispaced colourcut values in [0,1].

hexbin.mincnt integer, minimum count for a hexagon to be plotted. Default is 1.

hexbin.maxcnt integer, maximum count for a hexagon to be plotted. Cells with more counts are
not plotted. Default is NULL.

hexbin.xbins integer, number of bins in the x direction for hexbin plot. Default is 30.

hexbin.aspect numeric, aspect ratio of hexbin plot to control plot dimensions. Default is 1.

output.dir character directory to save output plots
filename.prefix

character prefix for output filenames

file.extension character file extension for output plots

tidy.titles logical whether to reformat PGS plot titles to remove periods
compute.correlation

logical whether to compute correlation between PGS and phenotype and display
in plot

corr.legend.corner

numeric vector indicating the corner of the correlation legend e.g. c(0,1) for
top left

corr.legend.cex

numeric cex for correlation legend

include.origin logical whether to include the origin (zero) in plot axes

width numeric width of output plot in inches

height numeric height of output plot in inches

xaxes.cex numeric size for x-axis labels

yaxes.cex numeric size for y-axis labels

titles.cex numeric size for plot titles

point.cex numeric size for plot points

border.padding numeric padding for plot borders

create.pgs.with.continuous.phenotype.plot 27

Value

If no output directory is provided, a multipanel lattice plot object is returned, otherwise a plot
is written to the indicated path and NULL is returned. If no continuous phenotype variables are
detected, a warning is issued and NULL is returned.

Examples

set.seed(100);

pgs.data <- data.frame(
PGS = rnorm(100, 0, 1),
continuous.phenotype = rnorm(100, 2, 1)
);

temp.dir <- tempdir();

Basic Plot
create.pgs.with.continuous.phenotype.plot(

pgs.data,
output.dir = temp.dir,
filename.prefix = 'basic-plot',
phenotype.columns = 'continuous.phenotype',
width = 6,
height = 6
);

Plot multiple PGS outputs

pgs.data$PGS.with.normalized.missing <- rnorm(100, 1, 1);
create.pgs.with.continuous.phenotype.plot(

pgs.data,
output.dir = temp.dir,
filename.prefix = 'multiple-pgs',
phenotype.columns = 'continuous.phenotype'
);

Plot non-default PGS columns

pgs.data$PGS.custom <- rnorm(100, 2, 1);
create.pgs.with.continuous.phenotype.plot(

pgs.data,
pgs.columns = 'PGS.custom',
output.dir = temp.dir,
filename.prefix = 'custom-pgs',
phenotype.columns = 'continuous.phenotype'
);

Plot multiple phenotypes

pgs.data$continuous.phenotype2 <- rnorm(100, 10, 1);
create.pgs.with.continuous.phenotype.plot(

28 flip.DNA.allele

pgs.data,
pgs.columns = 'PGS',
output.dir = temp.dir,
filename.prefix = 'multiple-phenotypes',
phenotype.columns = c('continuous.phenotype', 'continuous.phenotype2')
);

flip.DNA.allele Flip DNA allele

Description

Flip single base pair DNA alleles to their reverse complement. INDEL flipping is not supported.

Usage

flip.DNA.allele(alleles, return.indels.as.missing = FALSE)

Arguments

alleles A character vector of DNA alleles.

return.indels.as.missing

A logical value indicating whether to return NA for INDEL alleles. Default is
FALSE.

Value

A character vector of flipped DNA alleles. INDEL alleles are returned as is unless return.indels.as.missing
is TRUE.

Examples

alleles <- c('A', 'T', 'C', 'G', 'ATG', NA);
flip.DNA.allele(alleles);

format.chromosome.notation 29

format.chromosome.notation

Format chromosome names

Description

Format chromosome names according to user specifications.

Usage

S3 method for class 'chromosome.notation'
format(chromosome, chr.prefix, numeric.sex.chr)

Arguments

chromosome A character vector of chromosome names.

chr.prefix A logical indicating whether the ’chr’ prefix should be used when formatting
chromosome name.

numeric.sex.chr

A logical indicating whether the sex chromosomes should be formatted numer-
ically, as opposed to alphabetically.

Value

A character vector of chromosome names formatted according to user specifications.

Examples

numeric.chr <- c(1,2,23,24);
chr.with.prefix <- c('chr1', 'chr2', 'chrX', 'chrY');
format.chromosome.notation(numeric.chr, chr.prefix = TRUE, numeric.sex.chr = FALSE);
format.chromosome.notation(chr.with.prefix, chr.prefix = FALSE, numeric.sex.chr = TRUE);

get.pgs.percentiles get.pgs.percentiles

Description

Calculate percentiles and report decile and quartile ranks for a vector of polygenic scores

Usage

get.pgs.percentiles(pgs, n.percentiles = NULL)

30 import.pgs.weight.file

Arguments

pgs numeric vector of polygenic scores

n.percentiles integer number of percentiles to calculate (optional)

Value

data frame with columns for percentile, decile, quartile, and optional n.percentiles

Examples

x <- rnorm(100);
get.pgs.percentiles(x, n.percentiles = 20);

import.pgs.weight.file

Import PGS weight file

Description

Import a PGS weight file formatted according to PGS catalog guidelines, and prepare for PGS
application with apply.polygenic.score().

Usage

import.pgs.weight.file(pgs.weight.path, use.harmonized.data = TRUE)

Arguments

pgs.weight.path

A character string indicating the path to the pgs weight file.
use.harmonized.data

A logical indicating whether the file should be formatted to indicate harmonized
data columns for use in future PGS application.

Value

A list containing the file metadata and the weight data.

Examples

Example pgs weight file
pgs.weight.path <- system.file(

'extdata',
'PGS000662_hmPOS_GRCh38.txt.gz',
package = 'ApplyPolygenicScore',
mustWork = TRUE
);

import.pgs.weight.file(pgs.weight.path);

import.vcf 31

Note, harmonized data is used by default. To disable set `use.harmonized.data = FALSE`
import.pgs.weight.file(pgs.weight.path, use.harmonized.data = FALSE);

import.vcf Import VCF file

Description

A wrapper for the VCF import function in the vcfR package that formats VCF data for PGS appli-
cation with apply.polygenic.score().

Usage

import.vcf(
vcf.path,
long.format = FALSE,
info.fields = NULL,
format.fields = NULL,
verbose = FALSE

)

Arguments

vcf.path A character string indicating the path to the VCF file to be imported.

long.format A logical indicating whether the VCF import should be converted into long for-
mat (one row per sample-variant combination)

info.fields A character vector indicating the INFO fields to be imported, only applicable
when long format is TRUE.

format.fields A character vector indicating the FORMAT fields to be imported, only applica-
ble when long format is TRUE.

verbose A logical indicating whether verbose output should be printed by vcfR.

Value

A list of two elements containing imported VCF information in wide format and in long format if
requested.

Output Structure
The outputed list contains the following elements:

• split.wide.vcf.matrices: A list with two elements: a data.table of fixed VCF fields and a
matrix of genotyped alleles.

• combined.long.vcf.df: Default is NULL otherwise if long.format == TRUE a list with two el-
ements inherited from vcfR: a data frame meta data from the VCF header and a data frame
of all requested VCF fields (including INFO and FORMAT fields) in long format. Number of
rows is equal to the number of samples times the number of sites in the VCF.

32 parse.pgs.input.header

The split.wide.vcf.matrices list contains the following elements:

• genotyped.alleles: A matrix of genotyped alleles (e.g. "A/C"). Rows are unique sites and
columns are unique samples in the input VCF.

• vcf.fixed.fields: A data table of the following fixed (not varying by sample) VCF fields:
CHROM, POS, ID, REF, ALT. Also one additional column allele.matrix.row.index indi-
cating the corresponding row in genotyped.alleles

The combined.long.vcf.df list contains the following elements:

• meta: A data frame of meta data parsed from the VCF header

• dat: A data frame of all default VCF fields and all requested INFO and FORMAT fields in
long format. Number of rows is equal to the number of unique samples times the number of
unique sites in the VCF.

The wide format is intended to efficiently contain the bare minimum information required for PGS
application. It intentionally excludes much of the additional information included in a typical VCF,
and splits off genotypes into a separate matrix for easy manipulation. If users wish to maintain
additional information in the INFO and FORMAT fields for e.g. variant filtering, the long format
allows this. However, the long format requires substantially more memory to store, and is not
recommended for large input files.

Examples

Example VCF
vcf <- system.file(

'extdata',
'HG001_GIAB.vcf.gz',
package = 'ApplyPolygenicScore',
mustWork = TRUE
);

vcf.data <- import.vcf(vcf.path = vcf, long.format = TRUE);

parse.pgs.input.header

Parse PGS input file header

Description

Parse metadata from a PGS input file header.

Usage

parse.pgs.input.header(pgs.weight.path)

Arguments

pgs.weight.path

A character string indicating the path to the pgs weight file.

run.pgs.regression 33

Value

A data frame containing the metadata from the file header.

Examples

Example pgs weight file
pgs.weight.path <- system.file(

'extdata',
'PGS000662_hmPOS_GRCh38.txt.gz',
package = 'ApplyPolygenicScore',
mustWork = TRUE
);

parse.pgs.input.header(pgs.weight.path);

run.pgs.regression Run linear and logistic regression on a polygenic score and a set of
phenotypes

Description

Phenotype data variables are automatically classified as continuous or binary and a simple linear
regression or logistic regression, respectively, is run between the polygenic score and each pheno-
type. Categorical phenotypes with more than two category are ignored. If a binary variable is not
formatted as a factor, it is converted to a factor using as.factor() defaults. For logistic regression,
the first level is classified as "failure" and the second "success" by glm() defaults.

Usage

run.pgs.regression(pgs, phenotype.data)

Arguments

pgs numeric vector of polygenic scores

phenotype.data data.frame of phenotypes

Value

data frame with columns for phenotype, model, beta, se, p.value, r.squared, and AUC

Examples

set.seed(200);
pgs <- rnorm(200, 0, 1);
phenotype.data <- data.frame(

continuous.pheno = rnorm(200, 1, 1),
binary.pheno = sample(c(0, 1), 200, replace = TRUE)
);

run.pgs.regression(pgs, phenotype.data);

34 write.apply.polygenic.score.output.to.file

write.apply.polygenic.score.output.to.file

Write apply.polygenic.score output to file

Description

A utility function that writes the two data frames outputted by apply.polygenic.score to two tab-
delimited text files.

Usage

write.apply.polygenic.score.output.to.file(
apply.polygenic.score.output,
output.dir,
file.prefix = NULL

)

Arguments

apply.polygenic.score.output

list of two data frames: pgs.output and regression.output

output.dir character string of the path to write both output files

file.prefix character string of the file prefix to use for both output files

Index

analyze.pgs.binary.predictiveness, 2
apply.polygenic.score, 5
assess.pgs.vcf.allele.match, 11

check.pgs.weight.columns, 13
combine.pgs.bed, 14
combine.vcf.with.pgs, 15
convert.allele.frequency.to.dosage, 16
convert.alleles.to.pgs.dosage, 16
convert.pgs.to.bed, 17
create.pgs.boxplot, 18
create.pgs.density.plot, 20
create.pgs.rank.plot, 22
create.pgs.with.continuous.phenotype.plot,

25

flip.DNA.allele, 28
format.chromosome.notation, 29

get.pgs.percentiles, 29

import.pgs.weight.file, 30
import.vcf, 31

parse.pgs.input.header, 32

run.pgs.regression, 33

write.apply.polygenic.score.output.to.file,
34

35

	analyze.pgs.binary.predictiveness
	apply.polygenic.score
	assess.pgs.vcf.allele.match
	check.pgs.weight.columns
	combine.pgs.bed
	combine.vcf.with.pgs
	convert.allele.frequency.to.dosage
	convert.alleles.to.pgs.dosage
	convert.pgs.to.bed
	create.pgs.boxplot
	create.pgs.density.plot
	create.pgs.rank.plot
	create.pgs.with.continuous.phenotype.plot
	flip.DNA.allele
	format.chromosome.notation
	get.pgs.percentiles
	import.pgs.weight.file
	import.vcf
	parse.pgs.input.header
	run.pgs.regression
	write.apply.polygenic.score.output.to.file
	Index

