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ModelMap-package Modeling and Map Production using Random Forest and Related

Stochastic Models

Description

Creates sophisticated models of training data and validates the models with an independent test set,
cross validation, or with Out Of Bag (OOB) predictions on the training data. Create graphs and
tables of the model validation results. Applies these models to GIS .img files of predictors to create
detailed prediction surfaces. Handles large predictor files for map making, by reading in the .img
files in chunks, and output to the .txt file the prediction for each data chunk, before reading the next
chunk of data.

Details

Package: ModelMap

Type: Package

Version:  3.4.0.4

Date: 2023-04-04

License: Unlimited. This code was written and prepared by a U.S. Government employee on official time, and therefore it is

This package provides a push button approach to complex model building and production mapping.
It contains three main functions: model.build,model.diagnostics, and model.mapmake.

In addition it contains a simple function get.test that can be used to randomly divide a training
dataset into training and test/validation sets; build. rastLUT that uses GUI prompts to walk a user
through the process of setting up a Raster look up table to link predictors from the training data
with the rasters used for map contruction; model.explore, for preliminary data exploration; and,
model.importance.plot and model.interaction.plot for interpreting the effects of individual
model predictors.

ModelMap can be run in a traditional R command mode, where all arguments are specified in the
function call. However it can also be used in a full push button mode, where you type in the simple
command such as model.build, and GUI pop-up windows ask questions about the type of model,
the file locations of the data, etc...

Random Forest is implemented through the randomForest package within R. Random Forest is
more user friendly than Stochastic Gradient Boosting, as it has fewer parameters to be set by the
user, and is less sensitive to tuning of these parameters. A Random Forest model consists of multiple
trees that vote on predictions. For each tree a random subset of the training data is used to construct
the tree, with the remaining data points used to construct out-of-bag (OOB) error estimates. At
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each node of the tree a random selection of predictors is chosen to determine the split. The number
of predictors used to select the splits is the primary user specified parameter that can affect model
performance, and this parameter can be automatically optimized using the randomForest function
tuneRF (). Random Forest will not over fit data, therefore the only penalty of increasing the number
of trees is computation time. Random Forest can compute variable importance, an advantage over
some "black box" modeling techniques if it is important to understand the ecological relationships
underlying a model (Brieman, 2001).

Quantile Regression Forests is implemented through the quantregForest package.

Conditional Forests is implemented with the cforest() function in the party package. As stated
in the party package, ensembles of conditional inference trees have not yet been extensively tested,
so this routine is meant for the expert user only and its current state is rather experimental.

For Presence-Absence data, the package PresenceAbsence is used for model validation.

For model diagnostics the package corrplot is used to plot the correlation between predictor vari-
ables.

For map making, the raster is used to read and write . img files.

For interaction plots, the fields package is used to produce image plots.

Author(s)

Author: Elizabeth Freeman and Tracey Frescino

Maintainer: Elizabeth Freeman <elizabeth.a.freeman @usda.gov>

References
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Journal of Animal Ecology. 77:802-813.

Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine. Ann. Stat.,
29(5):1189-1232.

Friedman, J.H. (2002). Stochastic gradient boosting. Comput. Stat. Data An., 38(4):367-378.

Liaw, A. and Wiener, M. (2002). Classification and Regression by randomForest. R News 2(3),
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Torsten Hothorn, Peter Buhlmann, Sandrine Dudoit, Annette Molinaro and Mark J. ven der Laan
(2006a). Survival Ensembles. Biostatistics, 7(3), 355-373.

Torston Hothorn, Kurt Hornik and Achim Zeileis (2006b). Unbiased Recursive Partitioning: A Con-
ditional Inference Framework. JOurnal of Computational and Graphical Statistics, 15(3), 651-674.
Preprint available from http://statmath.wu-wein.ac.at/~zeileis/papers/Hothorn+Hornik+Zeileis-2006.pdf

build.rastLUT Build a raster Look-UP-Table for training dataset

Description
GUI prompts will help the user build a Look-Up-Table to associated predictor variable with their
corresponding spatial rasters.

Usage

build.rastLUT(imageList=NULL,predList=NULL,qdata.trainfn=NULL,
rastLUTfn=NULL, folder=NULL)

Arguments
imagelList Vector. A vector of character strings giving names and full paths to all raster
data files used in model.
predList Vector. A vector of character strings giving the predictor names used as headers

in the model training data.

gdata.trainfn String. The name (full path or base name with path specified by folder) of
the training data file used for building the model. The file must be a comma-
delimited file *.csv with column headings. qdata.trainfn can also be an R
dataframe. The column headers from qdata.trainfn are used to generate a list
of possible predictors for the raster Look-UP-Table.

rastLUTfn String. The name of the file output for the Look-Up-Table. By default, if a
file name is provided by the "qdatatrainfn” argument "_rastLUT.csv" ap-
pended after "qdatatrainfn”. Otherwise, default filename for look-up-table
is"rastLUT.csv"

folder String. The folder used for output. Do not add ending slash to path string. If
folder = NULL (default), a GUI interface prompts user to browse to a folder. To
use the working directory, specify folder = getwd().

Details
This function helps the user create a raster Look-Up-Table to be used later by model . mapmake ().
Currently this function only works in a Windows environment.
First, if "folder"” is not given, the user selects the output folder for the Look-UP-Table.

Second, if "predList” or "qdatatrainfn” are not given, the user selects the file containing the
training data. The header of the file is used to generate a selection list of possible predictor variables.
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Third, if "imageList" is not provided, the user selects the rasters.

Finally, the function steps through each band of each raster, and the user selects the appropriate
predictor.

Value

Returns a data frame containing the raster Look-Up-Table. Also Writes a . csv file containing the
raster Look-Up-Table.

Author(s)

Elizabeth Freeman

Examples

## Not run:
folder<-system.file("extdata"”, "helpexamples”, package = "ModelMap")
qdata.trainfn = paste(folder,"/DATATRAIN.csv”,sep="")

#build.rastLUT( qdata.trainfn=qdata.trainfn,
# folder=folder)

## End(Not run) # end dontrun

col2trans colors to transparent colors

Description

transform color names to transparent versions of rgb color codes

Usage

col2trans(col.names,alpha=0.5)

Arguments

col.names Vector. Vector of color names from colors.

alpha Number. Number between 0 and 1 giving alpha channel (opacity) value
Details

Translates a vector of color names to a vector of transparent rgb color codes. Color names must be
from names given by colors.
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Value

Outputs a vector of transparent color codes.

Author(s)

Elizabeth Freeman

Examples

col.names=c("blue”,"violetred4"”,"thistle3"”,"yellowgreen")
col2trans(col.names,alpha=.2)

###to see effect of alpha#

alpha<-(0:10)/10

colmat<-matrix( 1:(length(alpha)*length(col.names)),
nrow=length(alpha),

ncol=length(col.names),

byrow=TRUE)

color.codes<-vector("character”,0)

for(i in 1:length(alpha)){
color.codes<-c(color.codes,col2trans(col.names,alpha=alphali]))

}

#tmake plot#

plot( c(0,1),c(0,1),
type="n",xlab="alpha",ylab="color name”,6yaxt="n",6xaxs="i",6yaxs="i")
abline(h=(0:100)/100)

image( z=colmat,
x=(0:1length(alpha))/length(alpha),
y=(0:1ength(col.names))/length(col.names),
col=color.codes,

add=TRUE

)

op<-par (xpd=TRUE)

text( col.names,

x=-.08,
y=(1:1ength(col.names)-.5)/length(col.names),
srt=90)

par(op)
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get.test Randomly Divide Data into Training and Test Sets

Description

Uses random selection to split a dataset into training and test data sets

Usage

get.test(proportion.test, qdatafn = NULL, seed = NULL, folder=NULL,
qdata.trainfn = paste(strsplit(qdatafn, split = ".csv")[[1]], "_train.csv"”, sep=""),
qdata.testfn = paste(strsplit(qdatafn, split = ".csv”)[[1]], "_test.csv", sep=""))

Arguments

proportion.test

Number. The proportion of the training data that will be randomly extracted for
use as a test set. Value between 0 and 1.

gdatafn String. The name (basename or full path) of the data file to be split into training
and test data. This data should include both response and predictor variables.
The file must be a comma-delimited file *.csv) with column headings and the
predictor names in the file must match the raster layer files, if applying predic-
tions (predict = TRUE). If NULL (the default), a GUI interface prompts user to
browse to the data file.

seed Integer. The number used to initialize randomization to randomly select rows
for a test data set. If you want to produce the same model later, use the same
seed. If seed = NULL (the default), a new one is created each time.

folder String. The folder used for all output from predictions and/or maps. Do not
add ending slash to path string. If folder =NULL (default), a GUI interface
prompts user to browse to a folder. To use the working directory, specify folder
=getwd().

qdata.trainfn String. The name of the file output of training data. By default, _train ap-
pended after gdatafn.

gdata.testfn String. The name of the file output of test data. By default, _test appended
after qdatafn.

Details

This function should be run once, before starting analysis to create training and test sets. If the cross
validation option is to be used with RF or SGB models, or if the OOB option is to be used for RF
models, then this step is unnecessary.

Value

Outputs a training data file and test data file. Unless qdata.trainfn or qdata. testfn are speci-
fied, the output will be located in folder. The output will have the same rows and columns as the
original data.
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Author(s)

Elizabeth Freeman

Examples

## Not run:
gdatafn<-system.file("extdata”, "helpexamples”,"DATATRAIN.csv", package = "ModelMap")

gdata<-read.table(file=qdatafn,sep=",",header=TRUE, check.names=FALSE)

get.test( proportion.test=0.2,
gdatafn=qdatafn,

seed=42,

folder=getwd(),
gdata.trainfn="example.train.csv",
gdata.testfn="example.test.csv")

## End(Not run) # end dontrun

model.build Model Building

Description

Create sophisticated models using Random Forest, Quantile Regression Forests, Conditional Forests,
or Stochastic Gradient Boosting from training data

Usage

model.build(model.type = NULL, qdata.trainfn = NULL, folder = NULL,

MODELfn = NULL, predList = NULL, predFactor = FALSE, response.name = NULL,
response.type = NULL, unique.rowname = NULL, seed = NULL, na.action = NULL,
keep.data = TRUE, ntree = switch(model. type,RF=500,QRF=1000,CF=500,500),
mtry = switch(model.type,RF=NULL,QRF=ceiling(length(predList)/3),

CF = min(5,length(predList)-1),NULL), replace = TRUE, strata = NULL,
sampsize = NULL, proximity = FALSE, importance=FALSE,
quantiles=c(0.1,0.5,0.9), subset = NULL, weights = NULL,

controls = NULL, xtrafo = NULL, ytrafo = NULL, scores = NULL)

Arguments

model. type String. Model type. "RF" (random forest), "QRF" (quantile random forest), or
"CF" (conditional forest). The ModelMap package does not currently support
SGB models.
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qdata.trainfn String. The name (full path or base name with path specified by folder) of
the training data file used for building the model (file should include columns
for both response and predictor variables). The file must be a comma-delimited
file *. csv with column headings. qdata.trainfn can also be an R dataframe.
If predictions will be made (predict = TRUE or map=TRUE) the predictor col-
umn headers must match the names of the raster layer files, or a rastLUT must
be provided to match predictor columns to the appropriate raster and band. If
gdata.trainfn = NULL (the default), a GUI interface prompts user to browse to
the training data file.

folder String. The folder used for all output from predictions and/or maps. Do not
add ending slash to path string. If folder = NULL (default), a GUI interface
prompts user to browse to a folder. To use the working directory, specify folder
=getwd().

MODELfn String. The file name to use to save files related to the model object. If MODELfn
= NULL (the default), a default name is generated by pasting model. type, response. type,
and response. name, separated by underscores. If the other output filenames are
left unspecified, MODEL fn will be used as the basic name to generate other output
filenames. The filename can be the full path, or it can be the simple basename,
in which case the output will be to the folder specified by folder.

predList String. A character vector of the predictor short names used to build the model.
These names must match the column names in the training/test data files and the
names in column two of the rastLUT. If predList = NULL (the default), a GUI
interface prompts user to select predictors from column 2 of rastLUT.
If both predList =NULL and rastLUT = NULL, then a GUI interface prompts
user to browse to rasters used as predictors, and select from a generated list,
the individual layers (bands) of rasters used to build the model. In this case
(i.e., rastLUT = NULL), predictor column names of training data must be stan-
dard format, consisting of raster stack name followed by b1, b2, etc..., giving
the band number within each stack (Example: stacknamebl, stacknameb2,
stacknameb3, ..).

predFactor String. A character vector of predictor short names of the predictors from
predList that are factors (i.e categorical predictors). These must be a subset
of the predictor names given in predList Categorical predictors may have mul-
tiple categories.

response.name  String. The name of the response variable used to build the model. If response . name
= NULL, a GUI interface prompts user to select a variable from the list of column
names from training data file. response.name must be column name from the
training/test data files.

n o on

response.type String. Response type: "binary”, "categorical” or "continuous”. Binary
response must be binary 0/1 variable with only 2 categories. All zeros will
be treated as one category, and everything else will be treated as the second
category.

unique.rowname String. The name of the unique identifier used to identify each row in the
training data. If unique.rowname = NULL, a GUI interface prompts user to se-
lect a variable from the list of column names from the training data file. If
unique.rowname = FALSE, a variable is generated of numbers from 1 to nrow(qdata)
to index each row.
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seed

na.action

keep.data

ntree

mtry

replace

strata

sampsize

proximity

importance

quantiles

subset

weights

model.build

Integer. The number used to initialize randomization to build RF or SGB mod-
els. If you want to produce the same model later, use the same seed. If seed =
NULL (the default), a new seed is created each run.

String. Model validation. Specifies the action to take if there are NA values
in the predictor data. There are 2 options: (1) na.action =na.omit where
any data point with missing predictors is removed from the model building data;
(2) na.action = na.roughfix where a missing categorical predictor is replaced
with the most common category, and a missing continuous predictor or response
is replaced with the median. Note: it is not recommended that na. roughfix will
just be used for missing predictor. Data points with missing response will always
be omitted.

Logical. RF and SGB models. Should a copy of the predictor data be included
in the model object. Useful for if model.interaction.plot will be used later.

Integer. RF QRF and CF models. The number of random forest trees for a RF
model. The default is 500 trees.

Integer. RF QRF and CF models. Number of variables to try at each node of
Random Forest trees. By default, RF models will use the "tuneRF ()" function
to optimize mtry.

Logical. RF models. Should sampling of cases be done with or without replace-
ment?

Factor or String. RF models. A (factor) variable that is used for stratified sam-
pling. Can be in the form of either the name of the column in qdata or a factor
or vector with one element for each row of qdata.

Vector. RF models. Size(s) of sample to draw. For classification, if sampsize is
a vector of the length the number of factor levels strata, then sampling is strati-
fied by strata, and the elements of sampsize indicate the numbers to be drawn
from each strata. If argument strata is not provided, and repsonse. type =
"binary” then sampling is stratified by presence/absence. If argument sampsize
is not provided model . build() will use the default value from the randomForest
package: if (replace) nrow(data) else ceiling(.632*nrow(data)).

Logical. RF models. Should proximity measure among the rows be calculated
for unsupervised models?

Logical. QRF models. For QRF models only, importance must be specified
at the time of model building. If TRUE importance of predictors is assessed
at the given quantiles. Warning, on large datasets calculating QRF impor-
tances is very memory intensive and may require increasing memory limits with
memory.limit(). NOTE: Importance currently unavailable for QRF models.

Numeric. Used for QRF models if importance=TRUE. Specify which quan-
tiles of response variable to use. Later importance plots can only be made for
quantiles specified at the time of model building.

CF models. An optional vector specifying a subset of observations to be used in
the fitting process. Note: subset is not supported for cross validation diagnos-
tics.

CF models. An optional vector of weights to be used in the fitting process.
Non-negative integer valued weights are allowed as well as non-negative real
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weights. Observations are sampled (with or without replacement) according
to probabilities weights/sum(weights). The fraction of observations to be
sampled (without replacement) is computed based on the sum of the weights if
all weights are integer-valued and based on the number of weights greater zero
else. Alternatively, weights can be a double matrix defining case weights for
all ncol(weights) trees in the forest directly. This requires more storage but
gives the user more control. Note: weights is not supported for cross validation
diagnostics.

controls CF models. An object of class ForestControl-class, which can be obtained
using cforest_control (and its convenience interfaces cforest_unbiased and cfor-
est_classical). If controls is specified, then stand alone arguments mtry and
ntree ignored and these parameters must be specified as part of the controls
argument. If controls not specified, model.build defaults to cforest_unbiased(mtry=mtry,
ntree=ntree) with the values of mtry and ntree specified by the stand alone
arguments.

xtrafo CF models. A function to be applied to all input variables. By default, the
ptrafo function from the party package is applied. Defaults to xtrafo=ptrafo.

ytrafo CF models. A function to be applied to all response variables. By default, the
ptrafo function from the party package is applied. Defaults to ytrafo=ptrafo.

scores CF models. An optional named list of scores to be attached to ordered factors.
Note: weights is not supported for cross validation diagnostics.

Details

This package provides a push button approach to complex model building and production mapping.
It contains three main functions: model .build,model.diagnostics, and model . mapmake.

In addition it contains a simple function get.test that can be used to randomly divide a training
dataset into training and test/validation sets; build. rastLUT that uses GUI prompts to walk a user
through the process of setting up a Raster look up table to link predictors from the training data
with the rasters used for map contruction; model.explore, for preliminary data exploration; and,
model. importance.plot and model.interaction.plot for interpreting the effects of individual
model predictors.

These functions can be run in a traditional R command mode, where all arguments are specified in
the function call. However they can also be used in a full push button mode, where you type in, for
example, the simple command model.build, and GUI pop up windows will ask questions about
the type of model, the file locations of the data, etc...

When running the Mode1Map package on non-Windows platforms, file names and folders need to be
specified in the argument list, but other pushbutton selections are handled by the select.list()
function, which is platform independent.

Binary, categorical, and continuous response models are supported for Random Forest and Condi-
tional Forest. Quantile Random Forest is appropriate for only continuous response models.

Random Forest is implemented through the randomForest package within R. Random Forest is
more user friendly than Stochastic Gradient Boosting, as it has fewer parameters to be set by the
user, and is less sensitive to tuning of these parameters. A Random Forest model consists of multiple
trees that vote on predictions. For each tree a random subset of the training data is used to construct
the tree, with the remaining data points used to construct out-of-bag (OOB) error estimates. At each
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node of the tree a random selection of predictors is chosen to determine the split. The number of
predictors used to select the splits (argument mtry) is the primary user specified parameter that can
affect model performance.

By default mtry will be automatically optimized using the randomForest package tuneRF () func-
tion. Note that this is a stochastic process. If there is a chance that models may be combined later
with the randomForest package combine function then for consistency it is important to provide
the mtry argument rather that using the default optimization process.

Random Forest will not over fit data, therefore the only penalty of increasing the number of trees is
computation time. Random Forest can compute variable importance, an advantage over some "black
box" modeling techniques if it is important to understand the ecological relationships underlying a
model (Brieman, 2001).

Quantile Regression Forests is implemented through the quantregForest package.

Conditional Forests is implemented with the cforest() function in the party package. As stated
in the party package, ensembles of conditional inference trees have not yet been extensively tested,
so this routine is meant for the expert user only and its current state is rather experimental.

For CF models, Mode1Map currently only supports binary, categorical and continuous response mod-
els. Also, for some CF model parameters (subset, weights, and scores) ModelMap only provides
OOB and independent test set diagnostics, and does not support cross validation diagnostics.

Stochastic gradient boosting is not currently supported by Mode1Map.

Value

The function will return the model object. Additionally, it will write a text file to disk, in the folder
specified by folder. This file lists the values of each argument as chosen from GUI prompts used
for the function call.

Author(s)

Elizabeth Freeman and Tracey Frescino

References
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See Also

get.test, model.diagnostics, model.mapmake

Examples

## Not run:

HHHHEHHHAHEHHE AR
HIHEHHHAHHHA AR Run this set up code: #iHHEHHHEHHAHHHAHEHAHEHE
HHHHEHHH A

# set seed:
seed=38

# Define training and test files:
gdata.trainfn = system.file("extdata"”, "helpexamples”,"DATATRAIN.csv", package = "ModelMap")

# Define folder for all output:
folder=getwd()

#identifier for individual training and test data points
unique.rowname="ID"
A
HHHEHEHEHAHEH Pick one of the following sets of definitions: ###Ht#H#H#HHHHE
AR HAHRHEHRHEHEHAHRAHA AR
#iHHHAEHE Continuous Response, Continuous Predictors ###HHH#H##H

#file name:
MODELfn="RF_Bio_TC"

#predictors:
predList=c(”TCB","TCG","TCW")

#define which predictors are categorical:
predFactor=FALSE
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model.build
# Response name and type:
response.name="BI0"
response. type="continuous”
#iHHEHHHE# binary Response, Continuous Predictors #i#t##H###HH##
#file name to store model:
MODELfn="RF_CONIFTYP_TC"
#predictors:
predList=c("TCB","TCG","TCW")
#define which predictors are categorical:
predFactor=FALSE
# Response name and type:
response.name="CONIFTYP"
# This variable is 1 if a conifer or mixed conifer type is present,
# otherwise 0.
response.type="binary"
#iHHEHHHH# Continuous Response, Categorical Predictors #itHt#HEH#HHE
# In this example, NLCD is a categorical predictor.
#
# You must decide what you want to happen if there are categories
# present in the data to be predicted (either the validation/test set
# or in the image file) that were not present in the original training data.
# Choices:
# na.action = "na.omit”
# Any validation datapoint or image pixel with a value for any
# categorical predictor not found in the training data will be
# returned as NA.
# na.action = "na.roughfix”
# Any validation datapoint or image pixel with a value for any
# categorical predictor not found in the training data will have
# the most common category for that predictor substituted,
# and the a prediction will be made.

# You must also let R know which of the predictors are categorical, in other
# words, which ones R needs to treat as factors.
# This vector must be a subset of the predictors given in predlList

#file name to store model:
MODELfn="RF_BIO_TCandNLCD"

#predictors:
predList=c("TCB","TCG","TCW","NLCD")
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#define which predictors are categorical:
predFactor=c(”"NLCD")

# Response name and type:
response.name="BI0"
response. type="continuous”

I
HHHHHHHHRARERHHEA A build model: #HHHHHHHHHHHFHHHHHEHHHHHAAHAHEE
AR A

### create model before batching (only run this code once ever!) #i##

model.obj = model.build( model.type="RF",
qgdata.trainfn=qdata.trainfn,
folder=folder,
unique.rowname=unique.rowname,
MODEL fn=MODELfn,
predList=predList,
predFactor=predFactor,
response.name=response.name,
response.type=response.type,
seed=seed,
na.action="na.roughfix"

## End(Not run) # end dontrun

model.diagnostics Model Predictions and Diagnostics

Description

Takes model object and makes predictions, runs model diagnostics, and creates graphs and tables
of the results.

Usage

model.diagnostics(model.obj = NULL, qdata.trainfn = NULL, qdata.testfn = NULL,
folder = NULL, MODELfn = NULL, response.name = NULL, unique.rowname = NULL,
diagnostic.flag=NULL, seed = NULL, prediction.type=NULL, MODELpredfn = NULL,
na.action = NULL, v.fold = 10, device.type = NULL, DIAGNOSTICfn = NULL,
res=NULL, jpeg.res = 72, device.width = 7, device.height = 7, units="in",
pointsize=12, cex=par()$cex, req.sens, req.spec, FPC, FNC, quantiles=NULL,
all=TRUE, subset = NULL, weights = NULL, mtry = NULL, controls = NULL,

xtrafo = NULL, ytrafo = NULL, scores = NULL)
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Arguments

model.obj R model object. The model object to use for prediction. The model object must
be of type "RF" (random forest), "QRF" (quantile random forest), or "CF" (con-
ditional forest). The ModelMap package does not currently support SGB models.

qgdata.trainfn String. The name (full path or base name with path specified by folder) of
the training data file used for building the model (file should include columns
for both response and predictor variables). The file must be a comma-delimited
file *. csv with column headings. qdata.trainfn can also be an R dataframe.
If predictions will be made (predict = TRUE or map=TRUE) the predictor col-
umn headers must match the names of the raster layer files, or a rastLUT must
be provided to match predictor columns to the appropriate raster and band. If
gdata.trainfn = NULL (the default), a GUI interface prompts user to browse to
the training data file.

gdata.testfn String. The name (full path or base name with path specified by folder) of the
independent data set for testing (validating) the model’s predictions. The file
must be a comma-delimited file ”.csv"” with column headings and the column
headings must be the same as those in the training data file. qdata.testfn
can also be an R dataframe. If qdata.testfn = NULL (default), a GUI interface
asks user if there is a test set available, then prompts user to browse to the test
data file. If no test set is desired (for example, cross-fold validation will be per-
formed, or for RF models, Out-Of-Bag estimation, set qdata.testfn = FALSE.
If no test set is given, and qdata.testfn is not set to FALSE, the GUI interface
asks if a proportion of the data should be set aside as an independent test set. If
this is desired, the user will be prompted to specify the proportion to set aside
as test data, and two new data files will be generated in the out put folder. The
new file names will be the original data file name with "_train” and "_test"
appended to the end of the file names.

folder String. The folder used for all output from predictions and/or maps. Do not
add ending slash to path string. If folder = NULL (default), a GUI interface
prompts user to browse to a folder. To use the working directory, specify folder
=getwd().
MODELfn String. The file name to use to save the generated model object. If MODELfn =
NULL (the default), a default name is generated by pasting model . type_response. type_response.name.
If the other output filenames are left unspecified, MODELfn will be used as the
basic name to generate other output filenames. The filename can be the full path,
or it can be the simple basename, in which case the output will be to the folder
specified by folder.

response.name  String. The name of the response variable used to build the model. The response. name

must be column name from the training/test data files. If the model.obj was
constructed in Mode1Map with the model . build() function, then the model.diagnostics()
can extract the response.name from the model.obj. If the model was con-

structed outside of Mode1lMap the you may need to specify the response.name.

In particular, if a SGB model was constructed with the aid of Elith’s code, it

is necessary to specify the response.name argument, as all models constructed

with this code are given a response name of "y.data". If the response.name

argument differs from the response name in the model.obj, the specified argu-

ment is giver preference, and a warning generated.
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unique.rowname String. The name of the unique identifier used to identify each row in the
training data. If unique.rowname = NULL, a GUI interface prompts user to se-
lect a variable from the list of column names from the training data file. If
unique.rowname = FALSE, a variable is generated of numbers from 1 to nrow(qdata)
to index each row.

diagnostic.flag
String. The name of a column used to identify a subset of rows in the training
data or test data to use for model diagnostics. This column must be either a
logical vector (TRUE and FALSE) or a vector of zeros ond ones (where @=FALSE
and 1=TRUE. If this argument is used model diagnostics that depend on predicted
and observed values will be calculated from a subset of the training or test data.
These include confusion matrix and threshold criteria for binary response mod-
els and the scatterplot for continuous response models. The output file of pre-
dicted and observed values will have an aditional column, indicating which rows
were used in the diagnostic calculations. Note that for cross validation, the en-
tire training dataset will be used to create cross validation predictions, but that
only the predictions on the the rows indicated by diagnostic.flag will be used
for the diagnostics.

seed Integer. The number used to initialize randomization to build RF or SGB mod-
els. If you want to produce the same model later, use the same seed. If seed =
NULL (the default), a new seed is created each run.

prediction.type
String. Prediction type. "TEST", "CV", "00B" or "TRAIN". If predict = "TEST",
validation predictions will be made on the test set provided by qdata.testfn.
If predict = "CV", cross validation will be used on the training data provided by
gdata.trainfn. If model.obj is a Random Forest model and predict = "00B"
the Out-of-Bag predictions will be calculated on the training data. If model. obj
is a Stochastic Gradient Boosting model and predict = "TRAIN" the predictions
will be calculated on the training data, but these predictions should be used with
caution as this will lead to over optimistic estimates of model quality. A *.csv
file of the unique id, observed, and predicted values is generated and put in the
specified (or default) folder.

MODELpredfn String. Model validation. A character string used to construct the output file
names for the validation diagnostics, for example the prediction *. csv file, and
the graphics *. jpg, *.pdf and *.ps files. The filename can be the full path,
or it can be the simple basename, in which case the output will be to the folder
specified by folder. If MODELpredfn = NULL (the default), a default name is
created by pasting modelfn and " _pred”.

na.action String. Model validation. Specifies the action to take if there are NA values
in the predictor data or if there is a level or class of a categorical predictor
variable in the validation test set, but not in the training data set. By default,
model.daignostics() will use the same na.action as was given to model.build.
There are 2 options: (1) na.action = "na.omit"” where any data point with NA
or any new levels for any of the factored predictors is removed from the data; (2)
na.action = "na.roughfix"” where a missing categorical predictor is replaced
with the most common category, and a missing continuous predictor is replaced
with the median. Note: data points with missing response values will always be
omitted.
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v.fold

device.type

DIAGNOSTICfn

res

jpeg.res
device.width
device.height
units

pointsize

cex

reqg.sens

req.spec

FPC

FNC

quantiles

model.diagnostics

Integer (or logical FALSE). Model validation. The number of cross validation
folds to use when making validation predictions on the training data. Only used
if prediction. type = "CV".

String or vector of strings. Model validation. One or more device types for
graphical output from model validation diagnostics.

Current choices:

"default” default graphics device
"jpeg” *.jpg files

"none” no graphics device generated
"pdf” * pdf files

"png” * png files

"postscript”  *.psfiles

"tiff"” * tif files

String. Model validation. Name used as base to create names for output files
from model validation diagnostics. The filename can be the full path, or it can
be the simple basename, in which case the output will be to the folder specified
by folder. Defaults to DIAGNOSTICfn = MODELfn followed by the appropriate

n n o n

suffixes (i.e. ".csv", ".jpg", etc...).

Integer. Model validation. Pixels per inch for jpeg, png, and tiff plots. The
default is 72dpi, good for on screen viewing. For printing, suggested setting is
300dpi.

Integer. Model validation. Deprecated. Ignored unless res not provided.
Integer. Model validation. The device width for diagnostic plots in inches.
Integer. Model validation. The device height for diagnostic plots in inches.
Model validation. The units in which device.height and device.width are
given. Can be "px" (pixels), "in" (inches, the default), "cm” or "mm".

Integer. Model validation. The default pointsize of plotted text, interpreted as
big points (1/72 inch) at res ppi

Integer. Model validation. The cex for diagnostic plots.

Numeric. Model validation. The required sensitivity for threshold optimization
for binary response model evaluation.

Numeric. Model validation. The required specificity for threshold optimization
for binary response model evaluation.

Numeric. Model validation. The False Positive Cost for threshold optimization
for binary response model evaluation.

Numeric. Model validation. The False Negative Cost for threshold optimization
for binary response model evaluation.

Numeric Vector. QRF models. The quantiles to predict. A numeric vector with
values between zero and one. If model was built without specifying quantiles,
quantile importance can not be calculated, but quantiles can still be used to
specify prediction quantiles. If model was built with quantiles specified, then
the model quantiles will be used for importance graph. If quantiles are not
specified for model building or diagnostics, prediction quantiles will default to
quantiles=c(0.1,0.5,0.9)
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all Logical. QRF models. al1=TRUE uses all observations for prediction. al1=FALSE
uses only a certain number of observations per node for prediction (set with ar-
gument obs). Unlike in the quantredForest package itself, the default in Mod-
elMap is al1=TRUE, to more closely parallel ordinary random forest models.

subset CF models. NOT SUPPORTED. Only needed for prediction. type="CV" for
CF models. An optional vector specifying a subset of observations to be used
in the fitting process. Note: subset is not yet supported for cross validation
diagnostics.

weights CF models. NOT SUPPORTED. Only needed for prediction.type="CV" for
CF models. An optional vector of weights to be used in the fitting process.
Non-negative integer valued weights are allowed as well as non-negative real
weights. Observations are sampled (with or without replacement) according
to probabilities weights/sum(weights). The fraction of observations to be
sampled (without replacement) is computed based on the sum of the weights if
all weights are integer-valued and based on the number of weights greater zero
else. Alternatively, weights can be a double matrix defining case weights for all
ncol(weights) trees in the forest directly. This requires more storage but gives
the user more control. Note: weights is not yet supported for cross validation
diagnostics.

mtry Integer. Only needed for prediction.type="CV" for CF models (for RF and
QRF models mtry will be determined from the model object). Number of vari-
ables to try at each node of Random Forest trees.

controls CF models. Only needed for prediction. type="CV" for CF models. An object
of class ForestControl-class, which can be obtained using cforest_control
(and its convenience interfaces cforest_unbiased and cforest_classical). If controls
is specified, then stand alone arguments mtry and ntree ignored and these pa-
rameters must be specified as part of the controls argument. If controls not
specified, model.build defaults to cforest_unbiased(mtry=mtry, ntree=ntree)
with the values of mtry and ntree specified by the stand alone arguments.

xtrafo CF models. Only needed for prediction.type="CV" for CF models. A func-
tion to be applied to all input variables. By default, the ptrafo function from
the party package is applied.

ytrafo CF models. Only needed for prediction.type="CV" for CF models. A func-
tion to be applied to all response variables. By default, the ptrafo function from
the party package is applied.

scores CF models. NOT SUPPORTED. Only needed for prediction.type="CV" for
CF models. An optional named list of scores to be attached to ordered factors.
Note: scores is not yet supported for cross validation diagnostics.

Details

model.diagnostics()takes model object and makes predictions, runs model diagnostics, and cre-
ates graphs and tables of the results.

model.diagnostics() can be run in a traditional R command mode, where all arguments are
specified in the function call. However it can also be used in a full push button mode, where you
type in the simple command model.map(), and GUI pop up windows will ask questions about the
type of model, the file locations of the data, etc...
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When running model.map () on non-Windows platforms, file names and folders need to be specified
in the argument list, but other pushbutton selections are handled by the select.list() function,
which is platform independent.

Diagnostic predictions are made my one of four methods, and a text file is generated consisting of
three columns: Observation ID, observed values and predicted values. If predition.type = "CV")
an additional column indicates which cross-fold each observation fell into. If the models response
type is categorical then in addition a column giving the category predicted by majority vote, there
are also categories for each possible response category giving the proportion of trees that predicted
that category.

A variable importance graph is made. If response.type = "categorical”, category specific
graphs are generated for variable importance. These show how much the model accuracy for each
category is affected when the values of each predictor variable is randomly permuted.

The package corrplot is used to generate a plot of correlation between predictor variables. If there
are highly correlated predictor variables, then the variable importances of "RF" and "QRF" models
need to be interpreted with care, and users may want to consider looking at the conditional variable
importances available for "CF"” models produced by the party package.

If model. type = "RF", the OOB error is plotted as a function of number of trees in the model. If
response.type = "binary” or If response. type = "categorical” category specific graphs are
generated for OOB error as a function of number of trees.

If response. type = "binary"”, a summary graph is made using the PresenceAbsence package and
a x.csv spreadsheets are created of optimized thresholds by several methods with their associated
error statistics, and predicted prevalence.

If response. type = "continuous” a scatterplot of observed vs. predicted is created with a simple
linear regression line. The graph is labeled with slope and intercept of this line as well as Pearson’s
and Spearman’s correlation coefficients.

If response. type = "categorical”, a confusion matrix is generated, that includes erros of om-
mission and comission, as well as Kappa, Percent Correctly Classified (PCC) and the Multicate-
gorical Area Under the Curve (MAUC) as defined by Hand and Till (2001) and calculated by the
package HandTi112001.

Value

The function will return a dataframe of the row ID, and the Observed and predicted values.
For Binary response models the predicted probability of presence is returned.

For Categorical Response models the predicted category (by majority vote) is returned as well as
a column for each category giving the probability of that category. If necessary, make.names is
applied to the categories to create valid column names.

For Continuous response models the predicted value is returned.

Ifprediction.type = "CV" the dataframe also includes a column indicating which cross-validation
fold each datapoint was in.

Note

Importance currently unavailable for QRF models.
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If you are running cross validation diagnostics on a CF model, the model parameters will NOT au-
tomatically be passed to model.diagnostics(). For cross validation, it is the users responsibility
to be certain that the CF arguments are the same in model.build() and model.diagnostics().

Also, for some CF model parameters (subset, weights, and scores) ModelMap only provides
OOB and independent test set diagnostics, and does not support cross validation diagnostics.
Author(s)

Elizabeth Freeman and Tracey Frescino

References

Breiman, L. (2001) Random Forests. Machine Learning, 45:5-32.

Elith, J., Leathwick, J. R. and Hastie, T. (2008). A working guide to boosted regression trees.
Journal of Animal Ecology. 77:802-813.

Hand, D. J., & Till, R. J. (2001). A simple generalisation of the area under the ROC curve for
multiple class classification problems. Machine Learning, 45(2), 171-186.

Liaw, A. and Wiener, M. (2002). Classification and Regression by randomForest. R News 2(3),
18-22.

Ridgeway, G., (1999). The state of boosting. Comp. Sci. Stat. 31:172-181

See Also

get.test, model.build, model.mapmake

Examples

## Not run:

HHHHEHHHAHHAHHE AR A R A A
HIHEHHHAHAHA A Run this set up code: ##HHEHHHEHHAHHHAHEHAHEHE
A

# set seed:
seed=38

# Define training and test files:

gdata.trainfn = system.file("extdata"”, "helpexamples”, "DATATRAIN.csv", package = "ModelMap")
gdata.testfn = system.file("extdata”, "helpexamples"”, "DATATEST.csv", package = "ModelMap"”)

# Define folder for all output:
folder=getwd()

#identifier for individual training and test data points

unique.rowname="1D"
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A
HiHHHHHHAHAAE Pick one of the following sets of definitions: ###H##H######H##
AR AR

##HHHHHHA# Continuous Response, Continuous Predictors #i#t#t#Ht###H##

#file name to store model:
MODELfn="RF_Bio_TC"

#predictors:
predList=c("TCB","TCG","TCW")

#define which predictors are categorical:
predFactor=FALSE

# Response name and type:
response.name="BI0"
response. type="continuous”

H#iHHEHHH#H# binary Response, Continuous Predictors ##Ht###H#####

#file name to store model:
MODELfn="RF_CONIFTYP_TC"

#predictors:
predList=c("TCB","TCG","TCW")

#tdefine which predictors are categorical:
predFactor=FALSE

# Response name and type:
response.name="CONIFTYP"

# This variable is 1 if a conifer or mixed conifer type is present,
# otherwise 0.

response.type="binary"

#HHEHHHH# Continuous Response, Categorical Predictors #itHt#HHEHHHE
In this example, NLCD is a categorical predictor.

You must decide what you want to happen if there are categories
present in the data to be predicted (either the validation/test set
or in the image file) that were not present in the original training data.
Choices:
na.action = "na.omit”
Any validation datapoint or image pixel with a value for any
categorical predictor not found in the training data will be

#
#
#
#
#
#
#
#
#
# returned as NA.
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na.action = "na.roughfix”
Any validation datapoint or image pixel with a value for any
categorical predictor not found in the training data will have
the most common category for that predictor substituted,
and the a prediction will be made.

% ¥ o

# You must also let R know which of the predictors are categorical, in other
# words, which ones R needs to treat as factors.
# This vector must be a subset of the predictors given in predList

#file name to store model:
MODEL fn="RF_BIO_TCandNLCD"

#predictors:
predList=c("TCB","TCG","TCW","NLCD")

#define which predictors are categorical:
predFactor=c(”"NLCD")

# Response name and type:
response.name="BI0"
response. type="continuous"

B S S T
HHHHHHBHAARHEHHHHEERAEEE build model: #HHHHHHHEHHHEHEHHHHHHHHBHBHAHAHEHE
I

### create model ##H#

model.obj = model.build( model.type="RF",
qdata.trainfn=qdata.trainfn,
folder=folder,
unique.rowname=unique.rowname,
MODEL fn=MODELfn,
predList=predList,
predFactor=predFactor,
response.name=response.name,
response.type=response. type,
seed=seed,
na.action="na.roughfix"

HHHEHHAEHEEE R AR A
#### Then Run this code make validation predictions and diagnostics: #i#####
HEHHHHHHEHEEHH AR AR

### for Out-of-Bag predictions #i#

MODELpredfn<-paste(MODELfn,"_00B",sep="")
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PRED.00B<-model .diagnostics( model.obj=model.obj,
gdata.trainfn=qdata.trainfn,
folder=folder,
unique.rowname=unique.rowname,

# Model Validation Arguments
prediction.type="00B",
MODELpredfn=MODELpredfn,
device.type=c("default”,"jpeg", "pdf"),
na.action="na.roughfix"

)
PRED.00B

#i## for Cross-Validation predictions ###

#MODELpredfn<-paste(MODELfn,"_CV",sep="")

#PRED.CV<-model.diagnostics( model.obj=model.obj,
gdata.trainfn=qdata.trainfn,
folder=folder,
unique.rowname=unique.rowname,
seed=seed,

# Model Validation Arguments
prediction.type="CV",
MODELpredfn=MODELpredfn,
device.type=c("default”,"jpeg", "pdf"),
v.fold=10,
na.action="na.roughfix"

e E E EEEE B

#)
#PRED.CV

### for Independent Test Set predictions #i#

#MODELpredfn<-paste(MODELfn,"_TEST", sep="")
#PRED.TEST<-model.diagnostics( model.obj=model.obj,

# gdata.testfn=qdata.testfn,

# folder=folder,

# unique.rowname=unique.rowname,
# # Model Validation Arguments

# prediction. type="TEST",

# MODELpredfn=MODELpredfn,

# device.type=c("default"”, " jpeg", "pdf"),
# na.action="na.roughfix"

#)

#PRED.TEST

)

## End(Not run) # end dontrun

model.explore Exploratory data analysis




model.explore 25

Description

Graphically explores the relationships between the training data and the predictor rasters.

Usage

model .explore(qdata.trainfn = NULL, folder = NULL, predList = NULL,
predFactor = FALSE, response.name = NULL, response.type = NULL,
response.colors = NULL, unique.rowname = NULL, OUTPUTfn = NULL,
device.type = NULL, allow.default.graphics=FALSE, res=NULL, jpeg.res = 72,
MAXCELL=100000, device.width = NULL, device.height = NULL, units="in",
pointsize=12, cex=1, rastLUTfn = NULL, create.extrapolation.masks = FALSE,
na.value = -9999, col.ramp = rainbow(101, start = @, end = 0.5),

col.cat = palette()[-1])

Arguments

gdata.trainfn String. The name (full path or base name with path specified by folder) of
the training data file used for building the model (file should include columns
for both response and predictor variables). The file must be a comma-delimited
file *. csv with column headings. qdata.trainfn can also be an R dataframe.
If predictions will be made (predict = TRUE or map=TRUE) the predictor col-
umn headers must match the names of the raster layer files, or a rastLUT must
be provided to match predictor columns to the appropriate raster and band. If
gdata.trainfn = NULL (the default), a GUI interface prompts user to browse to
the training data file.

folder String. The folder used for all output from predictions and/or maps. Do not
add ending slash to path string. If folder = NULL (default), a GUI interface
prompts user to browse to a folder. To use the working directory, specify folder
=getwd().

predList String. A character vector of the predictor short names used to build the model.
These names must match the column names in the training/test data files and the
names in column two of the rastLUT. If predList = NULL (the default), a GUI
interface prompts user to select predictors from column 2 of rastLUT.

predFactor String. A character vector of predictor short names of the predictors from
predList that are factors (i.e categorical predictors). These must be a subset
of the predictor names given in predList Categorical predictors may have mul-
tiple categories.

response.name  String. The name of the response variable used to build the model. If response . name
= NULL, a GUI interface prompts user to select a variable from the list of column
names from training data file. response.name must be column name from the
training/test data files.

n on

response.type String. Response type: "binary”, "categorical” or "continuous”. Binary
response must be binary 0/1 variable with only 2 categories. All zeros will
be treated as one category, and everything else will be treated as the second
category.
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response.colors
Data frame. A two column data frame. Column names must be:category, the
response categories; and, color, the colors associated with each category.

unique.rowname String. The name of the unique identifier used to identify each row in the
training data. If unique.rowname = NULL, a GUI interface prompts user to se-
lect a variable from the list of column names from the training data file. If
unique.rowname = FALSE, a variable is generated of numbers from 1 to nrow(qdata)
to index each row.

OUTPUTfn String. Filename that ouput file names will be based on.

device. type String or vector of strings. Model validation. One or more device types for
graphical output from model validation diagnostics.

Current choices:

"default” default graphics device
"jpeg” *.jpg files

"none” no graphics device generated
"pdf” * pdf files

"png” * png files

"postscript” *.psfiles

"tiff" * tif files

Note that the "default” device is disabled unless allow.default.graphics=TRUE.
This is because these graphics are slow to produce, and if the onscreen graphics
window is moved or closed while the function is in progress there is a risk of
crashing the entire R session.

allow.default.graphics
Logical. Should the default on-screen graphics device be allowed. USE WITH
CAUTION! These graphics are complicated and slow to produce. If the on-
screen default graphics device is moved or closed before the plot is completed it
can crash the entire R session.

res Integer. Model validation. Pixels per inch for jpeg, png, and tiff plots. The
default is 72dpi, good for on screen viewing. For printing, suggested setting is
300dpi.

jpeg.res Integer. Graphical output. Deprecated. Ignored unless res not provided.

MAXCELL Integer. Graphical output. The maximum number of raster cells used to create

the graphical output. Rasters larger than this value will be subsampled for the
graphical maps and figures. The default value of MAXCELL=100009 is generally
a good resolution for onscreen viewing with the default jpeg resolution of 72dpi.
Publication quality qraphics may require higher MAXCELL. Higher values require
more memory and are slower to process.

Note: MAXCELL only affects graphical figures. Output rasters generated when
create.extrapolation.masks=TRUE are always done on full resolution rasters.

device.width Integer. Model validation. Th