
Package ‘RSTr’
January 31, 2026

Type Package

Title Gibbs Samplers for Discrete Bayesian Spatiotemporal Models

Version 1.1.4

Maintainer David DeLara <sfq1@cdc.gov>

URL https://cehi-code-repos.github.io/RSTr/

Description Takes Poisson or Binomial discrete spatial data and runs a Gibbs sampler for a vari-
ety of Spatiotemporal Conditional Autoregressive (CAR) models. Includes measures to pre-
vent estimate over-smoothing through a restriction of model informativeness for select mod-
els. Also provides tools to load output and get median estimates. Implements methods from Be-
sag, York, and Mollié (1991) ``Bayesian image restoration, with two applications in spa-
tial statistics'' <doi:10.1007/BF00116466>, Gelfand and Vounatsou (2003) ``Proper multivari-
ate conditional autoregressive models for spatial data analy-
sis'' <doi:10.1093/biostatistics/4.1.11>, Quick et al. (2017) ``Multivariate spatiotemporal model-
ing of age-specific stroke mortality'' <doi:10.1214/17-
AOAS1068>, and Quick et al. (2021) ``Evaluating the informativeness of the Besag-York-
Mollié CAR model'' <doi:10.1016/j.sste.2021.100420>.

License GPL (>= 3)

Encoding UTF-8

LinkingTo Rcpp (>= 1.1.0), RcppArmadillo (>= 15.2.2.1), RcppDist (>=
0.1.1.1)

Suggests ggplot2, knitr, rmarkdown, sf, testthat (>= 3.0.0)

Imports abind, matrixStats, spdep

Depends R (>= 4.3.0)

LazyData true

RoxygenNote 7.3.3

VignetteBuilder knitr, rmarkdown

Config/testthat/edition 3

NeedsCompilation yes

Author David DeLara [aut, cre] (ORCID:
<https://orcid.org/0000-0003-0485-7549>),

Centers for Disease Control and Prevention [aut, cph]
(https://ror.org/042twtr12)

1

https://cehi-code-repos.github.io/RSTr/
https://doi.org/10.1007/BF00116466
https://doi.org/10.1093/biostatistics/4.1.11
https://doi.org/10.1214/17-AOAS1068
https://doi.org/10.1214/17-AOAS1068
https://doi.org/10.1016/j.sste.2021.100420
https://orcid.org/0000-0003-0485-7549

2 RSTr-package

Repository CRAN

Date/Publication 2026-01-31 06:40:02 UTC

Contents

RSTr-package . 2
add_neighbors . 3
age_standardize . 4
aggregate_count . 5
aggregate_samples . 6
car . 7
get_estimates . 10
get_medians . 10
load_model . 11
load_samples . 12
long_to_list_matrix . 13
maexample . 14
mamap . 15
miadj . 16
miheart . 16
minsample . 17
minsplit . 17
mishp . 18
split_sample_groups . 19
standardize_samples . 20
suppress_estimates . 21
update_model . 22

Index 23

RSTr-package Gibbs Samplers for Discrete Bayesian Spatiotemporal Models

Description

Takes Poisson or Binomial discrete spatial data and runs a Gibbs sampler for a variety of Spa-
tiotemporal Conditional Autoregressive (CAR) models. Includes measures to prevent estimate over-
smoothing through a restriction of model informativeness for select models. Also provides tools to
load output and get median estimates. Implements methods from Besag, York, and Mollié (1991)
"Bayesian image restoration, with two applications in spatial statistics" <doi:10.1007/BF00116466>,
Gelfand and Vounatsou (2003) "Proper multivariate conditional autoregressive models for spatial
data analysis" <doi:10.1093/biostatistics/4.1.11>, Quick et al. (2017) "Multivariate spatiotemporal
modeling of age-specific stroke mortality" <doi:10.1214/17-AOAS1068>, and Quick et al. (2021)
"Evaluating the informativeness of the Besag-York-Mollié CAR model" <doi:10.1016/j.sste.2021.100420>.

add_neighbors 3

Details

The RSTr package uses Bayesian spatiotemporal modeling to spatially smooths discrete small-area
event rates using information from neighboring spatial regions. See ‘browseVignettes("RSTr")‘ for
a series of tutorials on basic usage of the RSTr functions.

Author(s)

David DeLara [aut, cre] (ORCID: <https://orcid.org/0000-0003-0485-7549>), Centers for Disease
Control and Prevention [aut, cph] (https://ror.org/042twtr12)

Maintainer: David DeLara <sfq1@cdc.gov>

References

Besag, J., York, J., and Mollié, A. (1991). Bayesian Image Restoration with Two Applications in
Spatial Statistics (with Discussion). Annals of the Institute of Statistical Mathematics, 43, 1–59.
doi:10.1007/BF00116466

Gelfand, A. E., & Vounatsou, P. (2003). Proper multivariate conditional autoregressive models for
spatial data analysis. Biostatistics, 4(1), 11–25. doi:10.1093/biostatistics/4.1.11

Quick, et al. (2017). Multivariate spatiotemporal modeling of age-specific stroke mortality. Annals
of Applied Statistics, 11(4), 2165–2177. doi:10.1214/17AOAS1068

Quick, et al. (2021). Evaluating the informativeness of the Besag-York-Mollié CAR model. Spatial
and Spatio-temporal Epidemiology, 37, 100420. doi:10.1016/j.sste.2021.100420

add_neighbors Add neighbors to adjacency information

Description

Modifies adjacency to indicate that neighs they should be treated as neighbors.

Usage

add_neighbors(adjacency, neighs)

Arguments

adjacency Adjacency information generated by spdep::poly2nb().
neighs A vector of regions to mark as adjacent. Accepts a vector of indices or names

assigned to adjacency.

Details

add_neighbors() is useful when adjacency information generated by spdep::poly2nb() indi-
cates lone regions without links/neighbors, particularly in island counties such as the Hawaiian is-
lands, Nantucket in Massachusetts, or San Juan in Washington. Note that add_neighbors() marks
all listed counties as adjacent, so if you have a set of chaining counties where the first may not be
connected to the last, several instances of add_neighbors() will be needed.

https://doi.org/10.1007/BF00116466
https://doi.org/10.1093/biostatistics/4.1.11
https://doi.org/10.1214/17-AOAS1068
https://doi.org/10.1016/j.sste.2021.100420

4 age_standardize

Value

A modified adjacency list.

Examples

if (requireNamespace("sf", quietly = TRUE) &&
requireNamespace("spdep", quietly = TRUE)) {

mamap <- sf::st_as_sf(mamap[order(mamap$GEOID),])
ma_adj <- spdep::poly2nb(mamap)
new_neighs <- c(1, 4, 10) # attach regions 1, 4, and 10
ma_adj <- add_neighbors(ma_adj, new_neighs)

Add neighbors by FIPS code instead of index
ma_adj <- suppressWarnings(spdep::poly2nb(mamap))
names(ma_adj) <- mamap$GEOID
ma_adj <- add_neighbors(ma_adj, neighs = c("25001", "25007", "25019"))

ma_adj <- suppressWarnings(spdep::poly2nb(mamap))
ma_adj <- add_neighbors(ma_adj, c(1, 4)) # only attach 1 and 4
ma_adj <- add_neighbors(ma_adj, c(4, 10)) # only attach 4 and 10

}

age_standardize Age-standardize model objects

Description

Age-standardizes samples using a standard population for an RSTr model object.

Usage

age_standardize(RSTr_obj, std_pop, new_name, groups = NULL)

Arguments

RSTr_obj An RSTr model object.

std_pop A vector of standard populations.

new_name The name to assign to the age-standardized group.

groups A vector of either indices for each group or a vector of strings for each group
name. If set to NULL, will use all groups in the dataset.

Value

An RSTr object with age-standardized estimates.

aggregate_count 5

Examples

std_pop <- c(113154, 100640, 95799)
data_min <- lapply(miheart, \(x) x[1:2, 1:3, 1:3])
adj_min <- list(2, 1)
on.exit(unlink(file.path(tempdir(), "test"), recursive = TRUE), add = TRUE)
mod_mst <- mstcar("test", data_min, adj_min, tempdir(), show_plots = FALSE, verbose = FALSE)
age-standardize by all age groups
mod_mst <- age_standardize(mod_mst, std_pop, "35-64")
Add onto age-standardized estimates. Age-standardize only by the first two age groups
mod_mst <- age_standardize(mod_mst, std_pop[1:2], "35-54", groups = 1:2)

aggregate_count Aggregate count arrays

Description

Sums counts over event/population arrays. Useful when manually generating group-aggregated/age-
standardized estimates and a population threshold is needed for suppression.

Usage

aggregate_count(
count,
margin,
groups = NULL,
bind_new = FALSE,
new_name = NULL

)

Arguments

count The array to aggregate.

margin For arrays, The margin on which the groups of interest are stratified.

groups A vector of either indices for each group or a vector of strings for each group
name. If set to NULL, will use all groups in the dataset.

bind_new If set to TRUE, will bind an array to the original sample dataset. Otherwise, will
generate a standalone array of samples.

new_name The name to assign to the age-standardized group.

Value

An array of aggregated count data.

6 aggregate_samples

Examples

margin_time <- 3
aggregate population from all years for each county-group
pop_7988 <- aggregate_count(miheart$n, margin_time)
aggregate population from 1980-1984 for each county-group
pop_8084 <- aggregate_count(miheart$n, margin_time, groups = as.character(1980:1984))
bind aggregated pop from all years to population data
pop_agg <- aggregate_count(miheart$n, margin_time, bind_new = TRUE, new_name = "1979-1988")

aggregate_samples Aggregate samples by non-age group

Description

Consolidates a set of samples over non-age groups using a population array to create weighted-
average samples.

Usage

aggregate_samples(
sample,
pop,
margin,
groups = NULL,
bind_new = FALSE,
new_name = NULL

)

Arguments

sample an array of samples imported with load_samples()

pop The population array to be used for weighted averages.

margin For arrays, The margin on which the groups of interest are stratified.

groups A vector of either indices for each group or a vector of strings for each group
name. If set to NULL, will use all groups in the dataset.

bind_new If set to TRUE, will bind an array to the original sample dataset. Otherwise, will
generate a standalone array of samples.

new_name The name to assign to the age-standardized group.

Details

aggregate_samples() is only meant for non-age group data, such as spatial regions, time pe-
riods, or other sociodemographic groups (race, sex, etc.). If you are interested in consolidating
samples by age group, use age_standardize() instead. Additionally, if you plan on doing age-
standardization along with aggregating by other groups, always aggregate groups first before doing
age-standardization to ensure that the samples are properly standardized.

car 7

Value

An array of weighted-average samples.

Examples

pop <- miheart$n[1:2, 1:3, 1:3]
time_margin <- 3
calculate prevalence by aggregating over time periods
samples_3564 <- aggregate_samples(minsample, pop, margin = time_margin)
calculate prevalence of only the first two time periods
samples_3554 <- aggregate_samples(minsample, pop, time_margin, groups = 1:2)
bind prevalence samples to original samples
samples_prev <- aggregate_samples(

minsample,
pop,
time_margin,
bind_new = TRUE,
new_name = "1979-1981"

)

car Create CAR model

Description

*car() generates an RSTr model object, samples, and estimates for either an MSTCAR, MCAR,
RCAR, or CAR model.

Usage

car(
name,
data,
adjacency,
dir = tempdir(),
seed = NULL,
perc_ci = 0.95,
iterations = 6000,
show_plots = TRUE,
verbose = TRUE,
ignore_checks = FALSE,
method = c("binomial", "poisson"),
impute_bounds = NULL,
inits = NULL,
priors = NULL

)

rcar(

8 car

name,
data,
adjacency,
dir = tempdir(),
seed = NULL,
perc_ci = 0.95,
A = NULL,
m0 = NULL,
iterations = 6000,
show_plots = TRUE,
verbose = TRUE,
ignore_checks = FALSE,
method = c("binomial", "poisson"),
impute_bounds = NULL,
inits = NULL,
priors = NULL

)

mcar(
name,
data,
adjacency,
dir = tempdir(),
seed = NULL,
perc_ci = 0.95,
iterations = 6000,
show_plots = TRUE,
verbose = TRUE,
ignore_checks = FALSE,
method = c("binomial", "poisson"),
impute_bounds = NULL,
inits = NULL,
priors = NULL

)

mstcar(
name,
data,
adjacency,
dir = tempdir(),
seed = NULL,
perc_ci = 0.95,
iterations = 6000,
show_plots = TRUE,
verbose = TRUE,
ignore_checks = FALSE,
method = c("binomial", "poisson"),
impute_bounds = NULL,

car 9

inits = NULL,
priors = NULL,
update_rho = FALSE

)

Arguments

name Name of model and corresponding folder.

data Dataset including mortality (Y) and population (n) information.

adjacency Dataset including adjacency information.

dir Directory where model will live.

seed Set of random seeds to use for data replication.

perc_ci The percentage of the desired estimate credible interval. Defaults to 95 percent
(0.95).

iterations The number of iterations to run the model for.

show_plots If set to FALSE, suppresses traceplots.

verbose If set to FALSE, suppresses model progress messages.

ignore_checks If set to TRUE, skips model validation.

method Run model with either Binomial data or Poisson data.

impute_bounds If counts are suppressed for privacy reasons, impute_bounds is the lower/upper
bound of suppression, typically 0 or 1 and 10, respectively.

inits Optional list of initial conditions for each parameter.

priors Optional list of priors for updates.

A For RCAR models, describes maximum intensity of smoothing between regions.

m0 For RCAR models, baseline neighbor count by region.

update_rho For MSTCAR models, controls whether rho update is performed.

Value

An RSTr model object.

Examples

data_min <- lapply(miheart, \(x) x[1:2, 1:3, 1:3])
adj_min <- list(2, 1)
MSTCAR model
on.exit(unlink(file.path(tempdir(), "test"), recursive = TRUE), add = TRUE)
mod_mst <- mstcar(

name = "test",
data = data_min,
adjacency = adj_min,
dir = tempdir(),
show_plots = FALSE,
verbose = FALSE

)

10 get_medians

get_estimates Extract estimates from RSTr model object

Description

Gathers model and estimate information for an RSTr model object, exported as a long table. Esti-
mate rates and their respective credible intervals are displayed by default in rates per 100,000.

Usage

get_estimates(RSTr_obj, rates_per = 1e+05, standardized = TRUE)

Arguments

RSTr_obj An RSTr model object.

rates_per The desired scaling for estimate rates.

standardized If RSTr_obj contains age-standardized rates, shows the age-standardized rates.
If set to FALSE, always shows the non-age-standardized rates.

Value

A long table containing region/group/time period names, estimates, credible intervals, relative
precisions, and the associated event/population counts.

Examples

std_pop <- c(113154, 100640, 95799)
data_min <- lapply(miheart, \(x) x[1:2, 1:3, 1:3])
adj_min <- list(2, 1)
on.exit(unlink(file.path(tempdir(), "test"), recursive = TRUE), add = TRUE)
mod_mst <- mstcar("test", data_min, adj_min, tempdir(), show_plots = FALSE, verbose = FALSE)
estimates_table <- get_estimates(mod_mst)
mod_mst <- age_standardize(mod_mst, std_pop, "35-64")
estimates_table_as <- get_estimates(mod_mst)

get_medians Generate medians, credible intervals, and relative precisions

Description

get_medians() generates median estimates for array of samples loaded from load_samples().

get_credible_interval() generates the credible interval of each estimate using samples loaded
from load_samples().

get_relative_precision() generates the relative precision of each estimate using samples loaded
from load_samples(). The relative precision for an estimate is defined as the ratio of the estimate’s
median divided by the width of its credible interval.

load_model 11

Usage

get_medians(sample)

get_credible_interval(sample, perc_ci = 0.95)

get_relative_precision(medians, ci)

Arguments

sample array of samples generated by load_samples.

perc_ci Number from 0 to 1. Determines width of credible interval.

medians Array of medians generated from samples.

ci Credible interval generated by get_credible_interval().

Value

An array of estimates/credible intervals/relative precisions.

Examples

minmedians <- get_medians(minsample)
minci <- get_credible_interval(minsample)
Reducing perc_ci narrows the credible interval
minci_75 <- get_credible_interval(minsample, perc_ci = 0.75)
low relative precision due to small data size
minrp <- get_relative_precision(minmedians, minci)
reducing CI increases relative precision
minrp_75 <- get_relative_precision(minmedians, minci_75)
find estimates with low relative precision
low_rp <- minrp_75 < 1

load_model Load model

Description

load_model() imports an RSTr object with name name in directory dir.

Usage

load_model(name, dir = tempdir())

Arguments

name The name of the model to load.

dir The directory in which the model lives.

12 load_samples

Value

An RSTr model object.

Examples

data_min <- lapply(miheart, \(x) x[1:2, 1:3, 1:3])
adj_min <- list(2, 1)
on.exit(unlink(file.path(tempdir(), "test"), recursive = TRUE), add = TRUE)
mod_mst <- mstcar("test", data_min, adj_min, tempdir(), show_plots = FALSE, verbose = FALSE)
mod_mst <- load_model(name = "test", dir = tempdir())

load_samples Load MCMC samples

Description

load_samples() gathers samples saved for model RSTr_obj. By default, loads the rate estimate
samples lambda, but any model parameters can be loaded. Users can also specify a burn-in period.

Usage

load_samples(RSTr_obj, param = "lambda", burn = 2000)

Arguments

RSTr_obj RSTr model object to load in samples from.

param Which parameter samples to load.

burn Number of burn-in samples to discard.

Value

An array of samples from model RSTr_obj.

Examples

data_min <- lapply(miheart, \(x) x[1:2, 1:3, 1:3])
adj_min <- list(2, 1)
on.exit(unlink(file.path(tempdir(), "test"), recursive = TRUE), add = TRUE)
mod_mst <- mstcar("test", data_min, adj_min, tempdir(), show_plots = FALSE, verbose = FALSE)
samples <- load_samples(mod_mst) * 1e5

long_to_list_matrix 13

long_to_list_matrix Generate count data for RSTr object

Description

long_to_list_matrix() converts a long table featuring event counts across regions and other
optional margins into a list that is readable by *car().

Usage

long_to_list_matrix(
table,
event,
population,
region,
group = NULL,
time = NULL

)

Arguments

table A table containing event and mortality counts stratified by group/region/time.

event The column containing event counts.

population The column containing population counts.

region The column containing region names.

group An optional column containing sociodemographic group names.

time An optional column containing time period names.

Details

long_to_list_matrix() will sum along any group/time stratifications that aren’t specified; for ex-
ample, if your dataset contains time periods and time is not specified in long_to_list_matrix(),
the output will be a sum of all time periods. Filter data by desired groups and time periods before
running long_to_list_matrix().

Value

A list of mortality and population counts organized into multi-dimensional arrays.

Examples

ma_data <- maexample[!is.na(maexample$Year),]
Generates data from 1979-1981 stratified by sex
ma_data_mst <- long_to_list_matrix(ma_data, Deaths, Population, County.Code, Sex.Code, Year.Code)
ma_data_79 <- ma_data[ma_data$Year == 1979,]
Generates 1979 data stratified by sex

14 maexample

ma_data_m <- long_to_list_matrix(ma_data_79, Deaths, Population, County.Code, Sex.Code)
Generates 1979 data summarized for all sexes
ma_data_u <- long_to_list_matrix(ma_data_79, Deaths, Population, County.Code)

maexample Massachusetts Heart Attack Mortality Data

Description

An example dataset from CDC WONDER containing counts for Myocardial Infarction (ICD-9 code
410.0) deaths in all 14 Massachusetts counties for individuals in 2 sex groups across 3 years.

Usage

maexample

Format

‘maexample‘ a data frame with 117 rows and 10 variables:

Notes Dataset notes, starts at line 85

Year Year label

Year.Code Year label

County County name

County.Code County FIPS code

Sex Sex group

Sex Abbreviated sex group

Deaths Death count

Population Population count

Crude.Rate Crude rate generated by death and population count

Source

<https://wonder.cdc.gov/cmf-icd9.html>

mamap 15

mamap Massachusetts Shapefile

Description

A dataset containing U.S. Census TIGER shape data for Massachusetts

Usage

mamap

Format

‘mamap‘ a data frame with 14 rows and 13 variables:

STATEFP State FIPS code

COUNTYFP County FIPS code

COUNTYNS County GNIS code

AFFGEOID Census Unique Identifier

GEOID Census Unique Identifier, truncated

NAME County Name

NAMELSAD County LSAD code

STUSPS Abbreviated State Name

STATE_NAME State Name

LSAD State LSAD code

ALAND amount of land in square meters

AWATER amount of water in square meters

geometry shape data for each county

Source

<https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html>

16 miheart

miadj Michigan Adjacency Data

Description

A dataset containing the adjacency structure for each county in Michigan

Usage

miadj

Format

‘miadj‘ a list containing neighbor adjacency vectors.

miheart Michigan Heart Attack Mortality Data

Description

A dataset containing counts for Myocardial Infarction (ICD-9 code 410.0) deaths in all 83 Michigan
counties for individuals in 6 age groups across 10 years. This dataset also contains the correspond-
ing population counts.

Usage

miheart

Format

‘miheart‘ a list with two array objects:

Y death count (0-1005)

n population count (26-292828)

Source

<https://wonder.cdc.gov/cmf-icd9.html>

minsample 17

minsample Samples Generated for Michigan data

Description

A 4-dimensional array of samples generated by the MSTCAR Gibbs sampler for use in testing and
examples

Usage

minsample

Format

‘minsample‘ a small sample dataset to be used in examples, generated by an MSTCAR model with
two regions, three age groups, and three time periods.

minsplit Age- and Sex-stratified Samples for Michigan data

Description

A 4-dimensional array of samples generated by the MSTCAR Gibbs sampler for demonstration
with split_sample_groups()

Usage

minsplit

Format

‘minsplit‘ a small sample dataset to be used for demonstration with split_sample_groups().
Generated by an MSTCAR model with two regions, six age-sex groups, and three time periods.

18 mishp

mishp Michigan Shapefile

Description

A dataset containing U.S. Census TIGER shape data for Michigan

Usage

mishp

Format

‘mishp‘ a data frame with 83 rows and 13 variables:

STATEFP State FIPS code

COUNTYFP County FIPS code

COUNTYNS County GNIS code

AFFGEOID Census Unique Identifier

GEOID Census Unique Identifier, truncated

NAME County Name

NAMELSAD County LSAD code

STUSPS Abbreviated State Name

STATE_NAME State Name

LSAD State LSAD code

ALAND amount of land in square meters

AWATER amount of water in square meters

geometry shape data for each county

Source

<https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html>

split_sample_groups 19

split_sample_groups Split sample groups

Description

Sequesters stratified sociodemographic group margin into individual array margins.

Usage

split_sample_groups(sample, new_groups, delimiter = "_")

Arguments

sample an array of samples imported with load_samples()

new_groups A string vector of names for each new group.

delimiter A character that specifies the break between group categories.

Details

When using aggregate_samples() or standardize_samples(), the group/age margin must only
feature groups of similar type, e.g., you cannot age-standardize with groups that specify both age
and race. split_sample_groups() sequesters each category of group into its own margin to al-
low group-aggregation and age-standardization of these multiply-stratified groups. Ensure that
the delimiter character is only used to split groups. E.g., for an age-sex group named 35-64_m,
"_" will split the margins with names "35-64" and "m", whereas for a group named 35_64_m,
split_sample_group() will fail.

Value

An array of samples with separate margins for stratified groups.

Examples

dimnames(minsplit)[2] # Can't age-standardize due to age-sex stratification
new_groups = c("age", "sex")
delimiter = "_"
sample_split <- split_sample_groups(minsplit, new_groups, delimiter)
dimnames(sample_split)[2:3] # can now age-standardize
std_pop <- c(113154, 100640, 95799)
age_margin <- 2
sample_as <- standardize_samples(sample_split, std_pop, age_margin)

20 standardize_samples

standardize_samples Age-standardize samples

Description

Age-standardizes samples using a standard population.

Usage

standardize_samples(
sample,
std_pop,
margin,
groups = NULL,
bind_new = FALSE,
new_name = NULL

)

Arguments

sample an array of samples imported with load_samples()

std_pop A vector of standard populations.

margin For arrays, The margin on which the groups of interest are stratified.

groups A vector of either indices for each group or a vector of strings for each group
name. If set to NULL, will use all groups in the dataset.

bind_new If set to TRUE, will bind an array to the original sample dataset. Otherwise, will
generate a standalone array of samples.

new_name The name to assign to the age-standardized group.

Value

An array of age-standardized samples.

Examples

std_pop <- c(113154, 100640, 95799)
age_margin <- 2
age-standardize by all age groups
samples_3564 <- standardize_samples(minsample, std_pop, age_margin)
age-standardize only by the first two age groups
samples_3554 <- standardize_samples(minsample, std_pop[1:2], age_margin, groups = 1:2)
bind age-standardized samples to original samples
samples_as <- standardize_samples(

minsample,
std_pop,
age_margin,
bind_new = TRUE,

suppress_estimates 21

new_name = "35-64"
)

suppress_estimates Suppress estimates based on reliability criteria

Description

Generates suppressed estimates for an RSTr model object with a given relative precision and popu-
lation/event threshold.

Usage

suppress_estimates(RSTr_obj, threshold = 0, type = c("population", "event"))

Arguments

RSTr_obj An RSTr model object.

threshold The population/event suppression threshold.

type Determines whether suppression threshold is based on population counts or
event counts.

Details

While the threshold argument is optional, population/event thresholds are necessary for non-
restricted models. Population/event thresholds should only be omitted for restricted CAR models,
such as the RCAR.

Value

An RSTr model object with suppressed estimates.

Examples

std_pop <- c(113154, 100640, 95799)
data_min <- lapply(miheart, \(x) x[1:2, 1:3, 1:3])
adj_min <- list(2, 1)
on.exit(unlink(file.path(tempdir(), "test"), recursive = TRUE), add = TRUE)
mod_mst <- mstcar("test", data_min, adj_min, tempdir(), show_plots = FALSE, verbose = FALSE)
mod_mst <- suppress_estimates(mod_mst, threshold = 1000, type = "population")
estimates_table <- get_estimates(mod_mst)

22 update_model

update_model Update model

Description

update_model() generates additional samples for model RSTr_obj.

Usage

update_model(RSTr_obj, iterations = 6000, show_plots = TRUE, verbose = TRUE)

Arguments

RSTr_obj The RSTr model object to generate samples for.

iterations Number of iterations to run.

show_plots If set to FALSE, hides traceplots.

verbose If set to FALSE, hides progress bar and other messages.

Value

An RSTr model object.

Examples

data_min <- lapply(miheart, \(x) x[1:2, 1:3, 1:3])
adj_min <- list(2, 1)
on.exit(unlink(file.path(tempdir(), "test"), recursive = TRUE), add = TRUE)
mod_mst <- mstcar("test", data_min, adj_min, tempdir(), show_plots = FALSE, verbose = FALSE)
mod_mst <- update_model(mod_mst, iterations = 1000, show_plots = FALSE, verbose = FALSE)

Index

∗ datasets
maexample, 14
mamap, 15
miadj, 16
miheart, 16
minsample, 17
minsplit, 17
mishp, 18

∗ package
RSTr-package, 2

add_neighbors, 3
age_standardize, 4
aggregate_count, 5
aggregate_samples, 6

car, 7

get_credible_interval (get_medians), 10
get_estimates, 10
get_medians, 10
get_relative_precision (get_medians), 10

load_model, 11
load_samples, 12
long_to_list_matrix, 13

maexample, 14
mamap, 15
mcar (car), 7
miadj, 16
miheart, 16
minsample, 17
minsplit, 17
mishp, 18
mstcar (car), 7

rcar (car), 7
RSTr (RSTr-package), 2
RSTr-package, 2

split_sample_groups, 19
standardize_samples, 20
suppress_estimates, 21

update_model, 22

23

	RSTr-package
	add_neighbors
	age_standardize
	aggregate_count
	aggregate_samples
	car
	get_estimates
	get_medians
	load_model
	load_samples
	long_to_list_matrix
	maexample
	mamap
	miadj
	miheart
	minsample
	minsplit
	mishp
	split_sample_groups
	standardize_samples
	suppress_estimates
	update_model
	Index

