Using Annoy in package C++ code

Aaron Lun?
3https:/github.com/LTLA

This version was compiled on January 10, 2026

This note shows how to use the Annoy library for Approximate Nearest
Neighbours (Oh Yeah) from C++ code using the headers provided by the
RcppAnnoy package.

Repp | Annoy | Approximate Nearest Neighbours

Setting up your package

The Annoy C++ library (Bernhardsson, 2023) implements a quick
and simple method for approximate nearest neighbor (oh yeah)
searching. The ReppAnnoy package (Eddelbuettel, 2026) provides
a centralized resource for developers to use this code in their own
R packages by relying on Repp (Eddelbuettel and Balamuta, 2018;
Eddelbuettel et al., 2026). To use Annoy in C++ code, simply put
in your DESCRIPTION the line

LinkingTo: RcppAnnoy

and the header files will be available for inclusion into your
package’s source files. Note that Annoy is a header-only library so
no additional commands are necessary for the linker.

Including the header files

Obviously, the header files need to be included in any C++ source
file that uses Annoy. A few macros also need to be added to handle
Windows-specific behaviour and to ensure that error messages are
printed through R. Version number comparison macros help in
conditioning changes on a particular version. Since release 0.0.17
all this is now expressed centrally in a header in the package so
users can just use this one-liner:

#include "RcppAnnoy.h"

Defining the search type

The AnnoyIndex template class can accommodate different data
types, distance metrics, random number generators, and thread-
ing policies (where the latter are a choice between sequential or
multithreaded). Here, we will consider the most common appli-
cation of a nearest-neighbor search on floating-point data with
Euclidean distance. We typedef the type and realized template
for convenience:

typedef float ANNOYTYPE;

typedef

Annoy: :AnnoyIndex<int, ANNOYTYPE, Annoy::Euclidean,
Kiss64Random,
RcppAnnoyIndexThreadPolicy>

MyAnnoyIndex;

Note that we use float by default, rather than the more con-
ventional double. This is chosen for speed and to be consistent
with the original Python implementation.

The Annoy library uses random number generation during index
creation (via the Kiss64Random class), with a seed that is separate

https://cran.r-project.org/package=RcppAnnoy

from R’s RNG seed. By default, the seed is fixed and results will be
“deterministic” in the sense that repeated runs on the same data will
yield the same result. They will also be unresponsive to the state
of R’s RNG seed. The seed used by AnnoyIndex can be specified
by the set_seed method, which should be called before adding
items to the index.

Building an index

Let’s say we have an Rcpp: :NumericMatrix named mat, where
each row corresponds to a sample and each column corresponds
to a dimension/variable.

size_t nsamples=mat.nrow() ;
size_t ndims=mat.ncol();

It is simple to build a MyAnnoyIndex containing the data in
this matrix. Note the copy from the double-precision matrix into a
float vector before calling add_item().

MyAnnoyIndex obj(ndims) ;
// from <vector>
std: :vector<ANNOYTYPE> tmp(ndims) ;
for (size_t i=0; i<nsamples; ++i) {
Rcpp: :NumericMatrix: :Row cr=mat.row(i);
// from <algorithm>
std: :copy(cr.begin(), cr.end(), tmp.begin());
obj.add_item(i, tmp.data());
}
obj.build(50) ;

The build () method accepts an integer argument specifying
the number of trees to use to construct the index. Indices with
more trees are larger (in memory and on file) but yield greater
search accuracy.

The index can also be saved to file via

obj.save(indexfile.c_str());

and reloaded in some other context:

MyAnnoyIndex obj2(ndims) ;
obj2.load(indexfile.c_str()); // same as 'obj'.

This is helpful for parallelization across workers running in
different R sessions. It also allows us to avoid rebuilding the index
in applications where the same data set is to be queried multiple
times.

Searching for nearest neighbors

Let’s say that we want to find the K (approximate) nearest neighbors
of sample c in the original data set used to construct obj. To do
this, we write:

RcppAnnoy Vignette | January 10, 2026

https://github.com/LTLA
https://github.com/spotify/annoy
https://cran.r-project.org/package=RcppAnnoy

2

std::vector<int> neighbor_index;

std: :vector<ANNOYTYPE> neighbor_dist;

obj.get_nns_by_item(c, K + 1, -1, &neighbor_index,
&neighbor_dist) ;

Upon return, the neighbor_index vector will be filled with
the sample numbers of the K nearest neighbors (i.e., rows of the
original mat, in this case). The neighbor_dist vector will be filled
with the distances to each of those neighbors. Note that:

* We ask for the K+1 nearest neighbors, as the set returned in
neighbor_index will usually include c itself. This should be
taken into consideration when the results are used in down-
stream calculations.

* The returned neighbors are sorted by increasing distance from
c. However, note that c itself may not necessarily be at the
start if there is another point with the same coordinates.

* get_nns_by_item() requires pointers to the vectors rather
than the vectors themselves. If the pointer to the output vector
for distances is NULL, distances will not be returned. This
provides a slight performance boost when only the identities
of the neighbors are of interest.

* The -1 is the default value for a tuning parameter that specifies
how many samples should be collected from the trees for
exhaustive distance calculations. This defaults to the number
of trees multiplied by the number of requested neighbors;
larger values will increase accuracy at the cost of speed.

Another application is to query the index for the neighbors of a
new sample given its coordinates. Assuming we have a float* to
an array of coordinates of length ndims, we do:

obj.get_nns_by_vector(query, K+1, -1,
4neighbor_index,
&neighbor_dist) ;

Further information

The Annoy repository is the canonical source of all things Annoying.
Questions or issues related to the Annoy C++ library itself should be
posted there. Any issues specific to the ReppAnnoy interface should
be posted at its separate Github repository. An example of using the
Annoy library via ReppAnnoy is available in the BiocNeighbors
package (Lun, 2025).

References

Bernhardsson E (2023). Annoy: Approximate Nearest Neighbors in C++/Python.
Python package version 1.17.2, URL https://github.com/spotify/annoy.

Eddelbuettel D (2026). RcppAnnoy: Repp Bindings for An-
noy, a Library for Approximate Nearest Neighbors. doi:
10.32614/CRAN.package .RcppAnnoy. R package version 0.0.23,
URL https://CRAN.R-Project.org/package=RcppAnnoy.

Eddelbuettel D, Balamuta JJ (2018). “Extending R with C++: A Brief
Introduction to Rcpp.” The American Statistician, 72(1). doi:
10.1080/00031305.2017.1375990.

Eddelbuettel D, Frangois R, Allaire J, Ushey K, Kou Q, Russel N, Cham-
bers J, Bates D (2026). Rcpp: Seamless R and C++ Integration. doi:
10.32614/CRAN.package.Rcpp. R package version 1.1.1, URL https:
//ICRAN.R-Project.org/package=Rcpp.

Lun A (2025). BiocNeighbors: Nearest Neighbor Detection for Bioconductor
Packages. doi:10.18129/B9.bioc.BiocNeighbors. R package ver-
sion 2.4.0, URL https://bioconductor.org/packages/BiocNeighbors.

https://cran.r-project.org/package=RcppAnnoy

https://github.com/spotify/Annoy
https://github.com/eddelbuettel/rcppannoy
https://bioconductor.org/packages/BiocNeighbors
https://github.com/spotify/annoy
https://doi.org/10.32614/CRAN.package.RcppAnnoy
https://doi.org/10.32614/CRAN.package.RcppAnnoy
https://CRAN.R-Project.org/package=RcppAnnoy
https://doi.org/10.1080/00031305.2017.1375990
https://doi.org/10.1080/00031305.2017.1375990
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://CRAN.R-Project.org/package=Rcpp
https://CRAN.R-Project.org/package=Rcpp
https://doi.org/10.18129/B9.bioc.BiocNeighbors
https://bioconductor.org/packages/BiocNeighbors
https://cran.r-project.org/package=RcppAnnoy

	Setting up your package
	Including the header files
	Defining the search type
	Building an index
	Searching for nearest neighbors
	Further information

