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aggregate_xts Aggregate values in xts objects

Description

Inputs an xts time series and outputs an xts time series whose values have been aggregated over a
moving window of a user-specified length.

Usage

aggregate_xts(
x,
len,
scale = c("days", "hours", "weeks", "quarters", "years"),
fun = "sum",
timescale = c("days", "hours", "weeks", "quarters", "years"),
na_thres = 10

)

Arguments

x xts object to be aggregated.

len length of the aggregation period.

scale timescale of the aggregation period, default is ’days’.

fun function to apply to the aggregated data, default is ’sum’.

timescale timescale of x, default is ’days’.

na_thres threshold for the percentage of NA values allowed in the aggregation period,
default = 10.

Details

This has been adapted from code available at https://github.com/WillemMaetens/standaRdized.

len is a single numeric value specifying over how many time units the data x is to be aggregated. By
default, len is assumed to correspond to a number of days, but this can also be specified manually
using the argument scale. scale must be one of: "days", "weeks", "months", "quarters", and
"years".

fun determines the function used to aggregate the time series. By default, fun = "sum", meaning
the aggregation results in accumulations over the aggregation period. Alternative functions can also
be used. For example, specifying fun = "mean" would return the mean over the aggregation period.

https://github.com/WillemMaetens/standaRdized
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timescale is the timescale of the input data x. By default, this is assumed to be "days".

Since the time series x aggregates data over the aggregation period, problems may arise when x
contains missing values. For example, if interest is on daily accumulations, but 50% of the values
in the aggregation period are missing, the accumulation over this aggregation period will not be
accurate. This can be controlled using the argument na_thres. na_thres specifies the percentage
of NA values in the aggregation period before a NA value is returned. i.e. the proportion of values
that are allowed to be missing. The default is na_thres = 10.

Value

An xts time series with aggregated values.

Author(s)

Sam Allen, Noelia Otero

Examples

data(data_supply, package = "SEI")
# consider hourly German energy production data in 2019
supply_de <- subset(data_supply, country == "Germany", select = c("date", "PWS"))
supply_de <- xts::xts(supply_de$PWS, order.by = supply_de$date)

# daily accumulations
supply_de_daily <- aggregate_xts(supply_de, len = 1, timescale = "hours")

# weekly means
supply_de_weekly <- aggregate_xts(supply_de, len = 1, scale = "weeks", fun = "mean", "hours")

plot(supply_de, main = "Hourly energy production in Germany")
plot(supply_de_daily, main = "Daily energy production in Germany")
plot(supply_de_weekly, main = "Weekly energy production in Germany")

data_supply Time series of wind and solar energy production

Description

This dataset contains hourly time series of wind and solar energy production in 27 European coun-
tries in 2019.

Usage

data("data_supply")
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Format

An object of type data.frame containing 3 variables:

date A POSIXct series of times at which energy production is available.

country The country to which the energy production measurement corresponds.

PWS The hourly wind and solar energy production for the corresponding time and country.

Details

The dataframe data_supply contains 236520 (24 x 365 x 27) rows, containing the wind and solar
energy production for each hour in 2019 for each of the 27 countries.

This corresponds to a subset of the data used in Bloomfield and Brayshaw. (2021), which can
be accessed at https://researchdata.reading.ac.uk/321/. Users are referred to this paper for further
details.

References

Bloomfield, Hannah and Brayshaw, David (2021): ERA5 derived time series of European aggre-
gated surface weather variables, wind power, and solar power capacity factors: hourly data from
1950-2020. doi:10.17864/1947.000321

Examples

data("data_supply")

data_wind_de Time series of average wind speed in Germany

Description

This dataset contains a daily time series of average wind speeds across Germany between 1979 and
2019.

Usage

data("data_wind_de")

Format

An object of type data.frame containing 2 variables:

date A POSIXct series of times at which average wind speeds are available.

wsmean The average wind speed in Germany for the corresponding time.

https://doi.org/10.17864/1947.000321
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Details

The dataframe data_wind_de contains 14975 (365 x 41 + 10) rows, containing the daily average
wind speed in Germany for 41 years between 1979 and 2019. Ten leap years occur within this
period.

This corresponds to a subset of the data that is publicly available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-pressure-levels?tab=overview. Users are referred to the reference below for further details.

References

Hersbach, H et al. (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus
Climate Change Service (C3S) Climate Data Store (CDS) doi:10.24381/cds.adbb2d47 Accessed
01-09-2022.

Examples

data("wind_de")

fit_dist Fit a distribution to data

Description

Function to fit a specified distribution a vector of data. Returns the estimated distribution and
relevant goodness-of-fit statistics.

Usage

fit_dist(data, dist, n_thres = 20)

Arguments

data vector of data

dist character string specifying the distribution, see details

n_thres number of data points required to estimate the distribution

Details

This has been adapted from code available at https://github.com/WillemMaetens/standaRdized.

data is a numeric vector of data from which the distribution is to be estimated.

dist is the specified distribution to be fit to data. This must be one of ’empirical’ (the empirical
distribution given data), ’kde’ (kernel density estimation), ’norm’, ’lnorm’, ’logis’, ’llogis’, ’exp’,
’gamma’, and ’weibull’.

By default, dist = "empirical", in which case the distribution is estimated empirically from data.
This is only recommended if there are at least 100 values in data, and a warning message is returned
otherwise.

https://doi.org/10.24381/cds.adbb2d47
https://github.com/WillemMaetens/standaRdized
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n_thres is the minimum number of observations required to fit the distribution. The default is
n_thres = 20. If the number of values in data is smaller than na_thres, an error is returned.
This guards against over-fitting, which can result in distributions that do not generalise well out-of-
sample.

Where relevant, parameter estimation is performed using maximum likelihood estimation.

Value

A list containing the estimated distribution function, its parameters, and Kolmogorov-Smirnov
goodness-of-fit statistics.

Examples

N <- 1000
shape <- 3
rate <- 2

# gamma distribution
data <- rgamma(N, shape, rate)
out <- fit_dist(data, dist = "gamma")
hist(data, breaks = 30, probability = TRUE)
lines(seq(0, 10, 0.01), dgamma(seq(0, 10, 0.01), out$params[1], out$params[2]), col = "blue")

# weibull distribution
data <- rweibull(N, shape, 1/rate)
out <- fit_dist(data, dist = "weibull")
hist(data, breaks = 30, probability = TRUE)
lines(seq(0, 10, 0.01), dweibull(seq(0, 10, 0.01), out$params[1], out$params[2]), col = "blue")

get_drought Get drought characteristics

Description

Extract characteristics of droughts from a time series of values. Drought characteristics include the
occurrence, intensity, magnitude, and duration of the drought.

Usage

get_drought(x, thresholds = c(1.28, 1.64, 1.96), exceed = TRUE, lag = FALSE)
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Arguments

x vector or xts object.

thresholds numeric vector containing thresholds to use when defining droughts.

exceed logical; TRUE if a drought is defined when x is above the thresholds, FALSE
otherwise.

lag logical; TRUE if the drought should end when the value changes sign.

Details

A drought is assumed to be defined as an instance when the vector x exceeds (if exceed = TRUE) or
falls below (if exceed = FALSE) the specified thresholds in thresholds.

thresholds can be a single value, or a vector of values. In the latter case, each threshold is assumed
to be a different level or intensity of the drought. For example, if thresholds = c(1, 1.5, 2), then
a level 1 drought occurs whenever x exceeds 1 but is lower than 1.5, a level 2 drought occurs
whenever x exceeds 1.5 but is lower than 2, and a level 3 drought occurs whenever x exceeds 2.

By default, thresholds = c(1.28, 1.64, 1.96), which correspond to the 90th, 95th, and 97.5th
percentiles of the standard normal distribution.

In meteorology, droughts are typically defined in terms of standardised indices, such as the stan-
dardised precipitation index (SPI). It is sometimes the case that a drought event ends not when the
variable of interest no longer exceeds (or falls below) the relevant thresholds, but rather when the
index changes sign. This can help to account for fluctuations around the threshold values, classing it
as one long drought rather than several shorter droughts. This definition can be used by specifying
lag = TRUE.

get_drought() currently does not use the time series information in the xts input, thereby assuming
that the time series is complete, without missing time periods. If x is a vector, rather than an xts
object, then this is also implicitly assumed.

The output is a dataframe containing the vector x, a logical vector specifying whether each value of
x corresponds to a drought event, and the magnitude of the drought. The magnitude of the drought
is only shown on the last day of the drought. This makes it easier to compute statistics about the
drought magnitude, such as the average drought magnitude. If thresholds is a vector, the intensity
or level of the drought is also returned.

Value

A data frame containing the original values x and the corresponding drought characteristics.

Author(s)

Sam Allen, Noelia Otero

References

Allen, S. and N. Otero (2023): ‘Standardised indices to monitor energy droughts’, Renewable En-
ergy doi:10.1016/j.renene.2023.119206

McKee, T. B., Doesken, N. J., & Kleist, J. (1993): ‘The relationship of drought frequency and
duration to time scales’, In Proceedings of the 8th Conference on Applied Climatology 17, 179-183.

https://doi.org/10.1016/j.renene.2023.119206
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Examples

data(data_supply)
# consider hourly German energy supply data in 2019
supply_de <- subset(data_supply, country == "Germany", select = c("date", "PWS"))
supply_de <- xts::xts(supply_de$PWS, order.by = supply_de$date)
supply_de_std <- std_index(supply_de, timescale = "hours")

get_drought(supply_de_std, thresholds = c(-1, -1.5, -2), exceed = FALSE)

get_pit Calculate probability integral transform values

Description

Function to estimate the cumulative distribution function (CDF) from a set of observations, and
return the corresponding probability integral transform (PIT) values.

Usage

get_pit(ref_data, new_data, dist = "empirical", return_fit = FALSE)

Arguments

ref_data numeric vector from which to estimate the CDF.

new_data numeric vector from which to calculate the PIT values.

dist string; distribution used to estimate the CDF.

return_fit logical; return parameters and goodness-of-fit statistics.

Details

dist specifies the distribution used to estimate the cumulative distribution function of the observa-
tions. By default, dist = "empirical", in which case the CDF is estimated empirically from the
values ref_data. This is only recommended if there are at least 100 values in ref_data, and a
warning message is returned otherwise.

Parametric distributions are more appropriate when there is relatively little data, and good reason to
expect that the data follows a particular distribution. To check that the chosen parametric distribu-
tion is appropriate, the argument return_fit can be used to return the estimated parameters of the
distribution, as well as Kolmogorov-Smirnov goodness-of-fit test statistics.

A flexible compromise between using empirical methods and parametric distributions is to use
kernel density estimation, dist = "kde".

dist must be one of: ’empirical’ (the empirical distribution given data), ’kde’ (kernel density
estimation), norm’, ’lnorm’, ’logis’, ’llogis’, ’exp’, ’gamma’, and ’weibull’. For the parametric
distributions, parameters are estimated using maximum likelihood estimation.
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Value

A vector of PIT values if return_fit = F, or, if return_fit = T, a list containing the estimated CDF
(F_x), the corresponding parameters (params), and properties of the fit (fit_props).

Author(s)

Sam Allen, Noelia Otero

Examples

N <- 1000
shape <- 3
rate <- 2

x_ref <- rgamma(N, shape, rate)
x_new <- rgamma(N, shape, rate)

# empirical distribution
pit <- get_pit(x_ref, x_new)
hist(pit)

# gamma distribution
pit <- get_pit(x_ref, x_new, dist = "gamma", return_fit = TRUE)
hist(pit$pit)

hist(x_ref, breaks = 30, probability = TRUE)
lines(seq(0, 10, 0.01), dgamma(seq(0, 10, 0.01), pit$params[1], pit$params[2]), col = "blue")

# weibull distribution
pit <- get_pit(x_ref, x_new, dist = "weibull", return_fit = TRUE)
hist(pit$pit)

hist(x_ref, breaks = 30, probability = TRUE)
lines(seq(0, 10, 0.01), dweibull(seq(0, 10, 0.01), pit$params[1], pit$params[2]), col = "blue")

# exponential distribution
pit <- get_pit(x_ref, x_new, dist = "exp", return_fit = TRUE)
hist(pit$pit)

hist(x_ref, breaks = 30, probability = TRUE)
lines(seq(0, 10, 0.01), dexp(seq(0, 10, 0.01), pit$params[1]), col = "blue")

plot_sei Plot standardised indices
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Description

Plot a time series containing standardised indices, or a histogram of the indices.

Usage

plot_sei(
x,
type = c("ts", "hist", "bar"),
title = NULL,
lab = "Std. Index",
xlims = NULL,
ylims = NULL,
n_bins = 30

)

Arguments

x vector or xts object containing the indices to be plotted.

type type of plot (either time series "ts", histogram "hist", or barplot "bar").

title optional title of the plot.

lab axis label.

xlims, ylims lower and upper limits of the axes.

n_bins the number of bins to show in the histogram.

Details

The plot_sei() function can be used to plot either a time series (if type = "ts") or a histogram
(if type = "hist" or type = "bar") of the values in x.

A time series can only be displayed if x is an xts time series.

The argument lab is a string containing the label of the x-axis if type = "hist" or type = "bar"
and the y-axis if type = "ts".

The options type = "hist" and type = "bar" both display histograms of the data x. With type =
"hist", plot_sei() is essentially a wrapper of geom_histogram(), while type = "bar" is a wrap-
per of geom_bar(). The latter can provide more flexibility when plotting bounded data, whereas
the former is easier to use when superimposing densities on top.

Value

A ggplot object displaying the standardised index values.

Author(s)

Sam Allen, Noelia Otero
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Examples

data(data_supply)
# consider hourly German energy supply data in 2019
supply_de <- subset(data_supply, country == "Germany", select = c("date", "PWS"))
supply_de <- xts::xts(supply_de$PWS, order.by = supply_de$date)
supply_de_std <- std_index(supply_de, timescale = "hours")

plot_sei(supply_de, title = "German renewable energy production in 2019")
plot_sei(supply_de_std, title = "German SREPI in 2019")

plot_sei(supply_de, type = "hist", title = "German renewable energy production in 2019")
plot_sei(supply_de_std, type = "hist", title = "German SREPI in 2019")

std_index Calculate standardised indices

Description

Inputs a time series of a chosen variable (e.g. precipitation, energy demand, residual load etc.) and
returns a time series of standardised indices. Indices can be calculated on any timescale.

Usage

std_index(
x_new,
x_ref = x_new,
timescale = NULL,
dist = "empirical",
return_fit = FALSE,
moving_window = NULL,
window_scale = NULL,
agg_period = NULL,
agg_scale = NULL,
agg_fun = "sum",
rescale = NULL,
rescale_fun = "sum",
index_type = "normal",
ignore_na = FALSE

)

Arguments

x_new numeric; vector or time series to be converted to standardised indices.

x_ref numeric; vector or time series containing reference data to use when calculating
the standardised indices.
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timescale string; timescale of the data. Required if the time series is to be aggregated or
rescaled.

dist string; distribution used to calculate the indices.

return_fit logical; return parameters and goodness-of-fit statistics for the distribution fit.

moving_window numeric; length of moving window on which to calculate the indices.

window_scale string; timescale of moving_window, default is the timescale of the data.

agg_period numeric; the number of values to aggregate over.

agg_scale string; timescale of agg_period, default is the timescale of the data.

agg_fun string; function used to aggregate the data over the aggregation period, default
is "sum".

rescale string; the timescale that the time series should be rescaled to.

rescale_fun string; function used to rescale the data, default is "sum".

index_type string; the type of index: "normal" (default), "probability", or "bounded".

ignore_na logical; ignore NAs when rescaling the time series.

Details

Standardised indices are calculated by estimating the cumulative distribution function (CDF) of the
variable of interest, and using this to transform the measurements to a standardised scale.

std_index() estimates the CDF using a time series of reference data x_ref, and applies the re-
sulting transformation to the time series x_new. The result is a time series of standardised x_new
values. These standardised indices quantify how extreme the x_new values are in reference to x_ref.
x_new and x_ref should therefore contain values of the same variable. If x_ref is not specified,
then x_new is also used to estimate the CDF.

x_new and x_ref can either be provided as vectors or xts time series. In the latter case, the time
series can be aggregated across timescales or rescaled. This is useful, for example, if x_new contains
hourly data, but interest is on daily accumulations or averages of the hourly data.

The argument rescale converts the data to a different timescale. The original timescale of the
data can be manually specified using the argument timescale. Otherwise, the function will try to
automatically determine the timescale of the data. Manually specifying the timescale of the data is
generally more robust. The rescaling is performed using the function rescale_fun. By default, this
is assumed to be rescale_fun = "sum", so that values are added across the timescale of interest.
This can be changed to any user-specified function.

The argument agg_period aggregates the data across the timescale of interest. This differs from
rescale in that the resolution of the data remains the same. agg_period is a number specifying
how long the data should be aggregated across. By default, it is assumed that agg_period is on the
same timescale as x_new and x_ref. For example, if the data is hourly and agg_period = 24, then
this assumes the data is to be aggregated over the past 24 hours. The scale of the aggregation period
can also be specified manually using agg_scale. For example, one could also specify agg_period
= 1 and agg_scale = "days", and this would also aggregate the data over the past day. agg_fun
specifies how the data is to be aggregated, the default is agg_fun = "sum".

timescale, agg_scale, and rescale must all be one of: "days", "weeks", "months", "quarters",
and "years".
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dist is the distribution used to estimate the CDF from x_ref. Currently, functionality is available to
fit one of the following distributions to the data: Normal (’norm’), Log-normal (’lnorm’), Logistic
(’logis’), Log-logistic (’llogis’), Exponential (’exp’), Gamma (’gamma’), and Weibull (’weibull’).
Alternatively, the CDF can be estimated empirically (dist = "empirical") based on the values in
x_ref, or using kernel density estimation (dist = "kde").

If dist is a parametric family of distributions, then parameters of the distribution are estimated
using maximum likelihood estimation from x_ref. The resulting parameters and corresponding
goodness-of-fit statistics can be returned by specifying return_fit = TRUE.

By default, the distribution is estimated over all values in x_ref. Alternatively, if x_new is an xts
object, parameters can be estimated sequentially using a moving window of values. moving_window
determines the length of the moving window. This is a single value, assumed to be on the same
timescale as x_new. This can also be specified manually using window_scale. window_scale must
also be one of "days", "weeks", "months", "quarters", and "years".

The function returns a vector of time series (depending on the format of x_new) containing the
standardised indices corresponding to x_new. Three different types of indices are available, which
are explained in detail in the vignette. The index type can be chosen using index_type, which must
be one of "normal" (default), "probability", and "bounded".

Value

Time series of standardised indices.

Author(s)

Sam Allen, Noelia Otero

References

Allen, S. and N. Otero (2023): ‘Standardised indices to monitor energy droughts’, Renewable En-
ergy 217, 119206 doi:10.1016/j.renene.2023.119206

McKee, T. B., Doesken, N. J., & Kleist, J. (1993): ‘The relationship of drought frequency and
duration to time scales’, In Proceedings of the 8th Conference on Applied Climatology 17, 179-183.

Examples

data(data_supply)
# consider hourly German energy supply data in 2019
supply_de <- subset(data_supply, country == "Germany", select = c("date", "PWS"))
supply_de <- xts::xts(supply_de$PWS, order.by = supply_de$date)
#options(xts_check_TZ = FALSE)

# convert to hourly standardised indices
supply_de_std <- std_index(supply_de, timescale = "hours")
hist(supply_de, main = "Raw values")
hist(supply_de_std, main = "Standardised values")

# convert to daily or weekly standardised indices
supply_de_std <- std_index(supply_de, timescale = "hours", rescale = "days")

https://doi.org/10.1016/j.renene.2023.119206
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# convert to weekly standardised indices calculated on each day
supply_de_std <- std_index(supply_de, timescale = "hours", rescale = "days",

agg_period = 1, agg_scale = "weeks")

# calculate standardised indices corresponding to December, based on the previous year
dec <- zoo::index(supply_de) > "2019-12-01 UTC"
supply_de_std_dec <- std_index(x_new = supply_de[dec], x_ref = supply_de[!dec],

timescale = "hours")

# calculate standardised indices using a 100 day moving window
supply_de_std_dec <- std_index(supply_de[dec], supply_de, timescale = "hours",

rescale = "days", moving_window = 100)

# suppose we are interested in the daily maximum rather than the daily total
supply_de_std <- std_index(supply_de, timescale = "hours", rescale = "days",

rescale_fun = "max")
supply_de_std <- std_index(supply_de, timescale = "hours", rescale = "days",

rescale_fun = "mean") # or average

# the default uses the empirical distribution, but this requires more data than
# parametric distributions, meaning it is not ideal when data is short, e.g. in weekly case
supply_de_std <- std_index(supply_de, timescale = "hours", rescale = "weeks") # warning
# instead, we can use a parametric distribution, e.g. a gamma distribution
supply_de_std <- std_index(supply_de, timescale = "hours", rescale = "weeks", dist = "gamma")
# we can check the fit by checking whether the indices resemble a standard normal distribution
hist(supply_de)
hist(supply_de_std)
# we can also look at the properties of the fit
supply_de_std <- std_index(supply_de, timescale = "hours", rescale = "weeks",

dist = "gamma", return_fit = TRUE)

# we could also use kernel density estimation, which is a flexible compromise between the two
supply_de_std <- std_index(supply_de, timescale = "hours", rescale = "weeks", dist = "kde")
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