
Package ‘SNMA’
February 4, 2026

Type Package

Title Stream Network Movement Analyses

Version 0.1.5

Date 2026-01-24

Maintainer Donald T. McKnight <donald.mcknight@my.jcu.edu.au>

Description Calculating home ranges and movements of animals in complex stream environments
is often challenging, and standard home range estimators do not apply. This
package provides a series of tools for assessing movements in a stream
network, such as calculating the total length of stream used, distances
between points, and movement patterns over time. See Vignette for additional
details. This package was originally released on 'GitHub' under the name 'SNM'.
SNMA was developed for analyses in McKnight et al. (2025) <doi:10.3354/esr01442>
which contains additional examples and information.

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Imports sf,geosphere,igraph

Suggests ggplot2, ggnewscale, knitr,rmarkdown

Depends R (>= 3.5)

VignetteBuilder knitr

NeedsCompilation no

Author Donald T. McKnight [aut, cre] (affiliation: Savanna Field Station)

Repository CRAN

Date/Publication 2026-02-04 18:10:13 UTC

Contents
animal.points . 2
calc.stream.dist . 3

1

https://doi.org/10.3354/esr01442

2 animal.points

dist.over.time . 4
movements . 7
nodes . 10
prep.data . 11
stream.boundaries . 13
stream.line . 13

Index 14

animal.points Example animal location data

Description

Hypothetical data set with the GPS coordinates for two turtles

Usage

animal.points

Format

A data frame with 11 rows and 5 columns:

lon.raw Longitude in decimal degrees

lat.raw Latitude in decimal degrees

lon.shifted Longitude shifted to line up with stream points to illustrate how the functions work

lat.shifted Latitude shifted to line up with stream points to illustrate how the functions work

id Turtle IDs

date.time Dates and times of points in POSIX format

point Names of each coordinate (optional)

Source

Fictional example generated to demonstrate this package

calc.stream.dist 3

calc.stream.dist Calculate distance along a stream

Description

Calculate the shortest distance along a stream network between a pair of points

Usage

calc.stream.dist(p1, p2, data)

Arguments

p1 (numeric vector) Longitude and latitude (in that order) of first point

p2 (numeric vector) Longitude and latitude (in that order) of second point

data (list) Output from prep.data.

Details

This is the primary function for calculating the shortest distance between two points along the
stream network.

Value

(numeric) Distance (in meters) between the two points

Examples

data(stream.line)
data(nodes)
data(animal.points)

network.20 <- prep.data(
l = stream.line,
freq = 20,
nodes = nodes,
lon.name = "lon",
lat.name = "lat",
node.name = "id"

)

calc.stream.dist(p1 = c(-88.99845, 17.17668),
p2 = c(-88.99838, 17.17710),
data=network.20)

4 dist.over.time

dist.over.time Distance moved over time intervals

Description

For a series of time intervals, calculate the distance moved between each point and the previous
point matching the given time interval.

Usage

dist.over.time(
data,
coords,
lon.name = "lon",
lat.name = "lat",
id.name = "id",
date.time.name = "date.time",
units = "days",
time.diff = 1,
diff.max = NULL,
sensitivity.min = 0.1,
sensitivity.max = 0.1,
sensitivity.change = 0,
custom.times = NULL,
custom.sensitivity = NULL

)

Arguments

data (list) Output from prep.data.

coords (data.frame) Data frame containing coordinates for animal locations. It must
include a column of animal IDs, columns of latitude and longitude (in decimal
degrees projected to the same system as the rest of the data), and a column of
dates/times (in POSIX format). All other columns will be ignored.

lon.name (character) For the coords object, the name of the column of longitudes (in
quotes). Default = "lon"

lat.name (character) For the coords object, the name of the column of latitudes (in quotes).
Default = "lat"

id.name (character) For the coords object, the name of the column of animal identities
(in quotes). Default = "id"

date.time.name (character) For the coords object, the name of the column of dates and times (in
a POSIX format). Default = "date.time"

units (character) One of "secs", "mins", "hours", or "days" specifying the units for all
time and sensitivity inputs and outputs

dist.over.time 5

time.diff (numeric) The amount of time to separate each analysis of distance (i.e., a time
interval based on units). Default = 1

diff.max (numeric) The maximum time interval to analyze. If NULL, it will use the
maximum possible interval. Default = NULL

sensitivity.min

(numeric) The minimum (starting) buffer (+/-) around time.diff (i.e., the buffer
when time.diff = 1). Default = 0.1

sensitivity.max

(numeric) The maximum buffer (+/-) around time.diff. Default = 0.1
sensitivity.change

(numeric) The amount that the sensitivity should change (both + and -) each
time interval. Default = 0

custom.times (numeric vector) Optional vector of custom time intervals to analyze (overrides
time.diff and diff.max)

custom.sensitivity

(numeric vector) Optional vector of custom sensitivities to apply to time inter-
vals (overrides all other sensitivity arguments)

Details

This function calculates movement over given intervals of time. For each coordinate (going from
oldest to newest) it looks for matches to previous coordinates where the time difference between
them matches the specified interval.

time.diff, diff.max, and units specify the time intervals. time.diff specifies the amount of
additional time in each sequential interval, with diff.max specifying the largest time interval. For
example, if time.diff = 6, diff.max, = 24 and units = "hours" movement will be calculated over
6 hours, 12 hours, 18 hours, and 24 hours.

Points can be used for multiple time intervals. For example, if time.diff = 1 and units = "days"
and an animal was tracked at 12:00 on the 1st, 2nd, 3rd, 5th, and 6th of January, the following pairs
of points would be used for each time interval:

• 1 day interval = days 1&2, 2&3, 5&6

• 2 day interval = days 1&3, 3&5

• 3 day interval = days 2&5, 3&6

• 4 day interval = days 1&5, 2&6

• 5 day interval = days 1&6

sensitivity.min, sensitivity.max, and sensitivity.change control a buffer of time (+/-)
around each interval. This allows for situations such as radio telemetry where points will rarely
match an exact time interval. For example, if the time interval is 24 hours with a 1 hour (+/-) buffer,
then for each point, it will look for corresponding points 23-25 hours previously.

In many cases, it may be desirable to increase the buffer slightly as the size of the time intervals in-
crease. The sensitivity.max and sensitivity.change arguments control this. sensitivity.max
specifies the maximum value a buffer can have, and sensitivity.change controls the amount of
buffer increase for new time interval.

Example: If:

6 dist.over.time

• time.diff = 1

• diff.max = 6

• units = "days"

• sensitivity.min = 0.1

• sensitivity.max = 0.5

• sensitivity.change = 0.1

The function will use intervals of 1, 2, 3, 4, 5, 6 days, and the corresponding buffers will be +/- 0.1,
0.2, 0.3, 0.4, 0.5, 0.5 days.

Note that the units are the same for all entries, and the buffer caps at +/- 0.5 because of diff.max,
Thus, for a given coordinate, it will look for corresponding coordinates 0.9-1.1, 1.8-2.2, 2.7-3.3,
3.6-4.4, 4.5-5.5, and 5.5-6.5 days previously.

To remove the buffer entirely, set sensitivity.min = 0, sensitivity.max = 0, and sensitivity.change
= 0

To set a fixed buffer, set sensitivity.min and sensitivity.max to the same value and set
sensitivity.change = 0

custom.times and custom.sensitivity allow users to supply vectors of times and sensitivities
that change at irregular intervals (e.g., 1, 3, 5, 10 days). These arguments override other time and
sensitivity arguments.

Note: The default sensitivity values are largely arbitrary, and you should carefully select your own
based on your study questions and system.

Note: For a given coordinate and time interval, only one match will be allowed with a previous
coordinate. If multiple matches are available within a time interval, only the one that is closest
to the specified interval will be retained (in the case of ties, the first is arbitrarily retained). For
example, if the time interval is 1 day with a +/- .5 buffer and the following points are available:
2023-01-01 12:00:00, 2023-01-01 13:00:00, and 2023-01-02 12:00:00, then when calculating the
distance for 2023-01-02 12:00:00, it will only calculate the distance to the point at 2023-01-01
12:00:00 because it was closer to the specified time interval of 1 day.

Value

A data frame containing the outputs for each point at each time interval.

Columns lat,lon,id, and date.time are for the ending position for the interval analyzed

Column dist = distance moved (m) during a given interval (during the actual.diff prior to the
specified point)

Column actual.diff = the exact time between the ending position and the previous point to which
it was paired (in the time units specified by units)

Column time.diff = the time interval specified by time.diff (in the time units specified by
units)

Column sensitivity = the time buffer (+/-) around the time.diff for the given point (in the time
units specified by units)

Note: Although each endpoint will only be matched with one previous point for a given time inter-
val, there may be multiple different end points within that time interval. For example, if time.diff

movements 7

= 1, sensitivity.min = .1, units = "days", and for a given animal, there were points at "2023-
06-01 12:00:00", "2023-06-02 12:00:00" and "2023-06-02 12:30:00", the results will include a row
with "2023-06-02 12:00:00" as the endpoint and a row with "2023-06-02 12:30:00" as the endpoint
(both showing the distance from "2023-06-01 12:00:00"). Depending on the data set and questions
being asked, that may create undesirable pseudoreplication and you may need to filter the results
based on date or some other criterion.

Note: When reading the time.diff column, remember that points are not necessarily sequential.
Thus, days = 1, 2, 3 does not necessarily indicate movement over days 1, 2, and 3 of the study, rather
it is movement over that many days, regardless of when in the study the pairs of points occurred.
See the vignette for suggestions on visualizing and analyzing these data.

Examples

data(stream.line)
data(nodes)
data(animal.points)

network.20 <- prep.data(
l = stream.line,
freq = 20,
nodes = nodes,
lon.name = "lon",
lat.name = "lat",
node.name = "id"

)

dist.results <- dist.over.time(data=network.20,
coords=animal.points,
lon.name="lon.raw",
lat.name="lat.raw",
id.name="id",
date.time.name="date.time",
units="days",
time.diff=1,
diff.max=NULL,
sensitivity.min=0,
sensitivity.max=0,
sensitivity.change=0)

movements Calculate movements

Description

Calculate movements in a stream network for multiple individuals

8 movements

Usage

movements(
data = NULL,
space.use = TRUE,
from.previous = TRUE,
cumulative = TRUE,
downstream.node = NULL,
coords,
lon.name = "lon",
lat.name = "lat",
id.name = "id",
date.time.name = NULL

)

Arguments

data (list) Output from prep.data.

space.use (logical) If TRUE (default), total space use (range) will be calculated up to and
including each point

from.previous (logical) If TRUE (default), the distance from the previous point will be calcu-
lated.

cumulative (logical) If TRUE (default), the cumulative distance moved up to and including
each point will be calculated.

downstream.node

(integer) The ID (number) of the node representing the furthest point down-
stream in your network (the root). If included, the distance from that point
and the direction of movement (upstream or downstream) will be calculated per
point.

coords (data.frame) Data frame containing coordinates for animal locations. At a min-
imum, it must include a column of animal IDs and columns of latitude and lon-
gitude (in decimal degrees projected to the same system as the rest of the data).
It can optionally include a date.time column (highly recommended) containing
the date and time of each point (in POSIX format). If the date.time column is
present, the data will be sorted by that. Otherwise, ensure the data are sorted
from oldest to newest. Other columns of metadata can be included and will be
returned.

lon.name (character) For the coords object, the name of the column of longitudes (in
quotes). Default = "lon"

lat.name (character) For the coords object, the name of the column of latitudes (in quotes).
Default = "lat"

id.name (character) For the coords object, the name of the column of animal identities
(in quotes). Default = "id"

date.time.name (character: optional) For the coords object, the name of the column of dates
and times (in a POSIX format). If included, the data will be sorted from old-
est to newest (otherwise sort before running), and the time difference between
consecutive points will be returned. Default = NULL

movements 9

Details

It takes a data frame of coordinates and calculates the specified summary statistics for each indi-
vidual. All results are in meters. Input data should be sorted from oldest point to newest, unless a
date.time column is included, in which case the sorting will be done internally.

space.use If TRUE, for each point, it will calculate the total space use up to and including the given
point. This includes all branches of the network covered by the points, but no portion is measured
more than once. It is simply the total area of the stream (expressed as linear meters) visited by the
animal. Note that there may occasionally be a very slight difference between this metric and the
other metrics when they describe the same space. This is caused by a slight misalignment between
a node and the end of a segment, but usually will be trivial.

from.previous If TRUE, for each point, it calculates the distance between that point and the previ-
ous point (following the stream network). This calculation is required for the cummualtive calcu-
lations and outputs will be returned anytime cummualtive == T, even if from.previous == F.

cumulative If TRUE, for each point, it calculates the total distance moved up to and including
that point. This differs from space.use because stretches of river get included each time they are
visited, so the cumulative distance increases anytime the animal moves.

downstream.node If this is included, for each point, it calculates the current distance from the point
furthest downstream. This can be a useful way to visualize movements over time by referencing a
fixed point (the furthest downstream). It also returns a column showing the direction of movement.
Keep in mind that on branched rivers, these results may be somewhat misleading. If, for example,
a stream forks 10 m upstream, and an animal moves from 5 m up the right fork then backtracks
on goes 6 m up the left fork, the distances from the furthest downstream point will be 15 and 16
(respectively) even though the animal moved 5 m downstream the left fork before moving 6 m up
the other. Likewise, the direction would be scored as "upstream" even though it first moved down-
stream. The direction is based simply on whether the shortest distance to the furthest downstream
point increased or decreased.

Note: This function does not incorporate the amount of time between points. Bear that in mind
when interpreting data collected over uneven time intervals.

Example: If an individual starts 100 meters upstream from the furthest downstream point in your
network and moves 10 m upstream from day 1 to 2, another 5 m upstream from day 2 to 3, then 4 m
downstream from day 3 to 4, then doesn’t move between days 4 and 5, it will return the following:

space.use dist.from.prev cumulative.dist dist.from.downstream direction
NA NA NA 100 NA
10 10 10 110 upstream
15 5 15 115 upstream
15 4 19 111 downstream
15 0 19 111 no.change

The first row is NA in most cases because there are no previous points to make comparisons. The
dist.from.prev column is simply the distances described in the example. The space.use column
shows increasing total space use over time. Notice that it does not change on days 4 and 5 because
the animal visits areas where it had already been recorded. In contrast, the cumulative.dist
increased on day 4 because it is simply the sum of all distances. Most values remained the same on
the last day because there was no movement (as reflected by the dist.from.prev and direction
columns).

10 nodes

Value

Data frame including all original columns, plus a columns of summary data. Column order may
have changed. All measurements are in linear meters.

Column space.use = result of space.use = TRUE

Column dist.from.prev = result of from.previous = TRUE

Column cumulative.dist = result of cumulative = TRUE

Column dist.from.downstream = result of downstream.node

Column direction = result of downstream.node (direction)

Column time.diff = returned if a date.time column is included. Shows the elapsed time (in hours)
between consecutive points

Examples

data(stream.line)
data(nodes)
data(animal.points)

network.20 <- prep.data(
l = stream.line,
freq = 20,
nodes = nodes,
lon.name = "lon",
lat.name = "lat",
node.name = "id"

)

move.results <- movements(data=network.20,
space.use=TRUE,
from.previous=TRUE,
cumulative=TRUE,
downstream.node=1,
coords=animal.points,
lon.name="lon.raw",
lat.name="lat.raw",
id.name="id",
date.time.name="date.time")

nodes Example node data

Description

Hypothetical node data set

Usage

nodes

prep.data 11

Format

A data frame with 8 rows and 3 columns:

lon Longitude in decimal degrees

lat Latitude in decimal degrees

id Node names (must be integers) ...

Source

Fictional example generated to demonstrate this package

prep.data Prepare data

Description

Wrapper function to prepare stream data for analyses

Usage

prep.data(
l,
freq = 1,
nodes,
lon.name = "lon",
lat.name = "lat",
node.name = "id"

)

Arguments

l (shapefile) A projected polyline loaded with st_read(). Should include an id
variable specifying different segments of the stream (this should be included
even if there is only a single segment)

freq (numeric) The distance (in meters) to add points. Default = 1

nodes (data.frame) A data frame of coordinates for the nodes where stream segments
meet or end. Should contain columns for latitude, longitude, and the identity of
each node (identities must be integers and go from 1 to number of nodes)

lon.name (character) Name of the column of longitudes (in quotes). Default = "lon"

lat.name (character) Name of the column of latitudes (in quotes). Default = "lat"

node.name (character) Name of the column of segment identities (in quotes). Default = "id"

12 prep.data

Details

Takes a shapefile (polyline) of the stream (including all segments (i.e., edges), with each segment
having a different ID) as well as a data frame of node locations. It then adds points at the specified
interval (to increase accuracy) and does a series of calculations to build reference tables of distances
along segments and among nodes.

Segments (edges) are defined as any section between two nodes with no nodes between them. Nodes
occur at each start, end, or intersection of segments.

This is the only function needed to prepare data for analyses such as calc.stream.dist, movements,
and dist.over.time

Note: All data MUST be in the same projected system. These functions are intended for data
formatted in decimal degrees.

Do not use braided streams. If a stream is braided (i.e., channels split then reconnect forming
islands) the calculations will be incorrect. If you are working in a braided system, but all of your
known movements do not include the braids, simply use a shapefile that does not include the braids
(e.g., a study that only tracks in the main channel and largest side channels, without tracking in
braided channels)

Value

A list containing five objects:

nodes = (data.frame) Coordinates for the nodes where stream segments meet or end.

increased.line = (data.frame) Coordinates describing the center line of the stream with an in-
creased frequency of points

dps.segments = (data.frame) Total distances of each segment and the nodes defining that segment

dps.distances = (list) List of data frames (one data frame per segment) with the distances between
each consecutive pair of points

node.distances = (data.frame) Minimum distance between each pair of nodes (not simply nodes
on a given segment)

Examples

data(stream.line)
data(nodes)
network.20 <- prep.data(

l = stream.line,
freq = 20,
nodes = nodes,
lon.name = "lon",
lat.name = "lat",
node.name = "id"

)

stream.boundaries 13

stream.boundaries Example stream outline

Description

Hypothetical outline of example stream (polygon shapefile). Not actually needed for functions.

Usage

stream.boundaries

Format

An sf data frame with 1 observation of 2 variables:

id NA

geometry shapefile geometry

Source

Fictional example generated to demonstrate this package

stream.line Example stream network shapefile

Description

Shapefile (polyline) for a hypothetical stream network

Usage

stream.line

Format

An "sf" data frame with 7 observations (stream segments) and 2 variables:

id id of each stream segement

geometry sf geometry data for each stream segement

Source

Fictional example generated to demonstrate this package. Shapefile was created in QGIS and im-
ported via st_read()

Index

∗ datasets
animal.points, 2
nodes, 10
stream.boundaries, 13
stream.line, 13

animal.points, 2

calc.stream.dist, 3, 12

dist.over.time, 4, 12

movements, 7, 12

nodes, 10

prep.data, 3, 4, 8, 11

stream.boundaries, 13
stream.line, 13

14

	animal.points
	calc.stream.dist
	dist.over.time
	movements
	nodes
	prep.data
	stream.boundaries
	stream.line
	Index

