TensorMCMC: Tensor Regression with Stochastic Low-Rank Updates

Provides methods for low-rank tensor regression with tensor-valued predictors and scalar covariates. Model estimation is performed using stochastic optimization with random-walk updates for low-rank factor matrices. Computationally intensive components for coefficient estimation and prediction are implemented in C++ via 'Rcpp'. The package also includes tools for cross-validation and prediction error assessment.

Version: 0.1.0
Imports: Rcpp (≥ 1.0.10), glmnet, stats
LinkingTo: Rcpp
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2026-01-12
DOI: 10.32614/CRAN.package.TensorMCMC (may not be active yet)
Author: Ritwick Mondal [aut, cre]
Maintainer: Ritwick Mondal <ritwick12 at tamu.edu>
License: MIT + file LICENSE
NeedsCompilation: yes
Materials: README
CRAN checks: TensorMCMC results

Documentation:

Reference manual: TensorMCMC.html , TensorMCMC.pdf
Vignettes: TensorMCMC (source, R code)

Downloads:

Package source: TensorMCMC_0.1.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=TensorMCMC to link to this page.