
Package ‘automerge’
January 31, 2026

Type Package

Title R Bindings for 'Automerge' 'CRDT' Library

Version 0.2.0

Description Provides R bindings to the 'Automerge' Conflict-free
Replicated Data Type ('CRDT') library. 'Automerge' enables automatic
merging of concurrent changes without conflicts, making it ideal for
distributed systems, collaborative applications, and offline-first
architectures. The approach of local-first software was proposed in
Kleppmann, M., Wiggins, A., van Hardenberg, P., McGranaghan, M. (2019)
<doi:10.1145/3359591.3359737>. This package supports all 'Automerge'
data types (maps, lists, text, counters) and provides both low-level
and high-level synchronization protocols for seamless interoperability
with 'JavaScript' and other 'Automerge' implementations.

License MIT + file LICENSE

URL https://github.com/posit-dev/automerge-r,

https://posit-dev.github.io/automerge-r/

BugReports https://github.com/posit-dev/automerge-r/issues

Depends R (>= 4.2)

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/build/compilation-database true

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

SystemRequirements 'automerge-c', or Cargo (Rust's package manager),
rustc >= 1.80 and CMake >= 3.25 to build from package sources.

NeedsCompilation yes

Author Charlie Gao [aut, cre] (ORCID: <https://orcid.org/0000-0002-0750-061X>),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>),
Authors of the dependency Rust crates [cph] (see inst/AUTHORS file)

1

https://doi.org/10.1145/3359591.3359737
https://github.com/posit-dev/automerge-r
https://posit-dev.github.io/automerge-r/
https://github.com/posit-dev/automerge-r/issues
https://orcid.org/0000-0002-0750-061X
https://ror.org/03wc8by49

2 Contents

Maintainer Charlie Gao <charlie.gao@posit.co>

Repository CRAN

Date/Publication 2026-01-31 19:30:02 UTC

Contents
am_apply_changes . 3
am_commit . 4
am_counter . 5
am_counter_increment . 5
am_create . 6
am_cursor . 7
am_cursor_position . 8
am_delete . 9
am_delete_path . 10
am_fork . 10
am_get . 11
am_get_actor . 12
am_get_actor_hex . 12
am_get_changes . 13
am_get_changes_added . 14
am_get_change_by_hash . 15
am_get_heads . 15
am_get_history . 16
am_get_last_local_change . 17
am_get_path . 18
am_insert . 19
am_keys . 19
am_length . 20
am_list . 21
am_load . 21
am_map . 22
am_mark . 23
am_marks . 24
am_marks_at . 25
am_merge . 26
am_put . 27
am_put_path . 28
am_rollback . 28
am_save . 29
am_set_actor . 30
am_sync . 30
am_sync_decode . 31
am_sync_encode . 32
am_sync_state_new . 33
am_text . 34
am_text_content . 34

am_apply_changes 3

am_text_splice . 35
am_text_update . 36
am_uint64 . 37
am_values . 38
as.character.am_text . 38
as.list.am_doc . 39
as_automerge . 40
automerge-constants . 41
extract-am_doc . 42
extract-am_object . 43
from_automerge . 44
length.am_doc . 44
length.am_object . 45
names.am_doc . 45
names.am_map . 46
replace-am_doc . 46
replace-am_object . 47

Index 49

am_apply_changes Apply changes to a document

Description

Applies a list of changes (obtained from am_get_changes()) to a document. This is useful for
manually syncing changes or for applying changes received over a custom network protocol.

Usage

am_apply_changes(doc, changes)

Arguments

doc An Automerge document

changes A list of raw vectors (serialized changes) from am_get_changes()

Value

The document doc (invisibly, for chaining)

4 am_commit

Examples

Create two documents
doc1 <- am_create()
doc2 <- am_create()

Make changes in doc1
am_put(doc1, AM_ROOT, "x", 1)
am_commit(doc1)

Get changes and apply to doc2
changes <- am_get_changes(doc1, NULL)
am_apply_changes(doc2, changes)

Now doc2 has the same data as doc1

am_commit Commit pending changes

Description

Commits all pending operations in the current transaction, creating a new change in the document’s
history. Commits can include an optional message (like a git commit message) and timestamp.

Usage

am_commit(doc, message = NULL, time = NULL)

Arguments

doc An Automerge document

message Optional commit message (character string)

time Optional timestamp (POSIXct). If NULL, uses current time.

Value

The document doc (invisibly)

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "key", "value")
am_commit(doc, "Add initial data")

Commit with specific timestamp
am_commit(doc, "Update", Sys.time())

am_counter 5

am_counter Create an Automerge counter

Description

Creates a counter value for use with Automerge. Counters are CRDT types that support conflict-free
increment and decrement operations.

Usage

am_counter(value = 0L)

Arguments

value Initial counter value (default 0)

Value

An am_counter object

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "score", am_counter(0))

am_counter_increment Increment a counter value

Description

Increments an Automerge counter by the specified delta. Counters are CRDT types that support
concurrent increments from multiple actors. Unlike regular integers, counter increments are com-
mutative and do not conflict when merged.

Usage

am_counter_increment(doc, obj, key, delta)

Arguments

doc An Automerge document

obj An Automerge object ID (map or list), or AM_ROOT for the document root

key For maps: a character string key. For lists: an integer index (1-based)

delta Integer value to add to the counter (can be negative)

6 am_create

Details

The delta can be negative to decrement the counter.

Value

The document (invisibly), allowing for chaining with pipes

Examples

Counter in document root (map)
doc <- am_create()
doc$score <- am_counter(0)
am_counter_increment(doc, AM_ROOT, "score", 10)
doc$score # 10

am_counter_increment(doc, AM_ROOT, "score", 5)
doc$score # 15

Decrement with negative delta
am_counter_increment(doc, AM_ROOT, "score", -3)
doc$score # 12

Counter in a nested map
doc$stats <- am_map(views = am_counter(0))
stats_obj <- doc$stats
am_counter_increment(doc, stats_obj, "views", 100)

Counter in a list (1-based indexing)
doc$counters <- list(am_counter(0), am_counter(5))
counters_obj <- doc$counters
am_counter_increment(doc, counters_obj, 1, 1) # Increment first counter
am_counter_increment(doc, counters_obj, 2, 2) # Increment second counter

am_create Create a new Automerge document

Description

Creates a new Automerge document with an optional custom actor ID. If no actor ID is provided, a
random one is generated.

Usage

am_create(actor_id = NULL)

am_cursor 7

Arguments

actor_id Optional actor ID. Can be:

• NULL (default) - Generate random actor ID
• Character string - Hex-encoded actor ID
• Raw vector - Binary actor ID bytes

Value

An external pointer to the Automerge document with class c("am_doc", "automerge").

Thread Safety

The automerge package is NOT thread-safe. Do not access the same document from multiple R
threads concurrently. Each thread should create its own document with am_create() and synchro-
nize changes via am_sync_*() functions after thread completion.

Examples

Create document with random actor ID
doc <- am_create()

Create with custom hex actor ID
doc2 <- am_create("0123456789abcdef0123456789abcdef")

Create with raw bytes actor ID
actor_bytes <- as.raw(1:16)
doc3 <- am_create(actor_bytes)

am_cursor Create a cursor at a position in a text object

Description

Cursors provide stable references to positions within text objects that automatically adjust as the
text is edited. This enables features like maintaining selection positions across concurrent edits in
collaborative editing scenarios.

Usage

am_cursor(obj, position)

Arguments

obj An Automerge object ID (must be a text object)

position Integer position in the text (0-based inter-character position)

8 am_cursor_position

Value

An am_cursor object (external pointer) that can be used with am_cursor_position() to retrieve
the current position

Indexing Convention

Cursor positions use 0-based indexing (unlike list indices which are 1-based). This is because
positions specify locations between characters, not the characters themselves:

• Position 0 = before the first character

• Position 1 = between 1st and 2nd characters

• Position 5 = after the 5th character

For the text "Hello":

H e l l o
0 1 2 3 4 5 <- positions (0-based, between characters)

This matches am_text_splice() behavior. Positions count Unicode code points (characters), not
bytes.

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "text", am_text("Hello World"))
text_obj <- am_get(doc, AM_ROOT, "text")

Create cursor at position 5 (after "Hello", before " ")
cursor <- am_cursor(text_obj, 5)

Modify text before cursor
am_text_splice(text_obj, 0, 0, "Hi ")

Cursor position automatically adjusts
new_pos <- am_cursor_position(cursor)
new_pos # 8 (cursor moved by 3 characters)

am_cursor_position Get the current position of a cursor

Description

Retrieves the current position of a cursor within a text object. The position automatically adjusts as
text is inserted or deleted before the cursor’s original position. The cursor remembers which text
object it was created for, so you only need to pass the cursor itself.

Usage

am_cursor_position(cursor)

am_delete 9

Arguments

cursor An am_cursor object created by am_cursor()

Value

Integer position (0-based inter-character position) where the cursor currently points. See am_cursor()
for indexing details.

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "text", am_text("Hello World"))
text_obj <- am_get(doc, AM_ROOT, "text")

Create cursor
cursor <- am_cursor(text_obj, 5)

Get position
pos <- am_cursor_position(cursor)
pos # 5

am_delete Delete a key from a map or element from a list

Description

Removes a key-value pair from a map or an element from a list.

Usage

am_delete(doc, obj, key)

Arguments

doc An Automerge document

obj An Automerge object ID (from nested object), or AM_ROOT for the document root

key For maps: character string key to delete. For lists: numeric index (1-based, like
R vectors) to delete

Value

The document doc (invisibly)

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "temp", "value")
am_delete(doc, AM_ROOT, "temp")

10 am_fork

am_delete_path Delete value at path

Description

Delete a value from an Automerge document using a path vector.

Usage

am_delete_path(doc, path)

Arguments

doc An Automerge document

path Character vector, numeric vector, or list of mixed types specifying the path to
the value to delete

Value

The document (invisibly)

Examples

doc <- am_create()
am_put_path(doc, c("user", "address", "city"), "NYC")
am_put_path(doc, c("user", "name"), "Alice")

Delete nested key
am_delete_path(doc, c("user", "address"))

Address should be gone
am_get_path(doc, c("user", "address")) # NULL

am_fork Fork an Automerge document

Description

Creates a fork of an Automerge document at the current heads or at a specific point in history. The
forked document shares history with the original up to the fork point but can diverge afterwards.

Usage

am_fork(doc, heads = NULL)

am_get 11

Arguments

doc An Automerge document

heads Optional list of change hashes to fork at a specific point in the document’s his-
tory. If NULL (default) or an empty list, forks at current heads. Each hash should
be a raw vector (32 bytes).

Value

A new Automerge document (fork of the original)

Examples

doc1 <- am_create()
doc2 <- am_fork(doc1)

Now doc1 and doc2 can diverge independently

am_get Get a value from an Automerge map or list

Description

Retrieves a value from an Automerge map or list. Returns NULL if the key or index doesn’t exist.

Usage

am_get(doc, obj, key)

Arguments

doc An Automerge document

obj An Automerge object ID (from nested object), or AM_ROOT for the document root

key For maps: character string key. For lists: numeric index (1-based). Returns NULL
for indices <= 0 or beyond list length.

Value

The value at the specified key/position, or NULL if not found. Nested objects are returned as
am_object instances.

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "name", "Alice")

name <- am_get(doc, AM_ROOT, "name")
name # "Alice"

12 am_get_actor_hex

am_get_actor Get the actor ID of a document

Description

Returns the actor ID of an Automerge document as a raw vector. The actor ID uniquely identifies
the editing session that created changes in the document.

Usage

am_get_actor(doc)

Arguments

doc An Automerge document

Details

For a hex string representation, use am_get_actor_hex().

Value

A raw vector containing the actor ID bytes

Examples

doc <- am_create()
actor <- am_get_actor(doc)

Use am_get_actor_hex() for display
actor_hex <- am_get_actor_hex(doc)
cat("Actor ID:", actor_hex, "\n")

am_get_actor_hex Get the actor ID as a hex string

Description

Returns the actor ID of an Automerge document as a hex-encoded string. This is more efficient than
converting the raw bytes returned by am_get_actor() using R-level string operations.

Usage

am_get_actor_hex(doc)

am_get_changes 13

Arguments

doc An Automerge document

Value

A character string containing the hex-encoded actor ID

Examples

doc <- am_create()
actor_hex <- am_get_actor_hex(doc)
cat("Actor ID:", actor_hex, "\n")

am_get_changes Get changes since specified heads

Description

Returns all changes that have been made to the document since the specified heads. If heads is
NULL, returns all changes in the document’s history.

Usage

am_get_changes(doc, heads = NULL)

Arguments

doc An Automerge document
heads A list of raw vectors (change hashes) returned by am_get_heads(), or NULL to

get all changes.

Details

Changes are returned as serialized raw vectors that can be transmitted over the network and applied
to other documents using am_apply_changes().

Value

A list of raw vectors, each containing a serialized change.

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "x", 1)
am_commit(doc)

Get all changes
all_changes <- am_get_changes(doc, NULL)
cat("Document has", length(all_changes), "change(s)\n")

14 am_get_changes_added

am_get_changes_added Get changes in one document that are not in another

Description

Compares two documents and returns the changes that exist in doc2 but not in doc1. This is use-
ful for determining what changes need to be applied to bring doc1 up to date with doc2, or for
implementing custom synchronization logic.

Usage

am_get_changes_added(doc1, doc2)

Arguments

doc1 An Automerge document (base/reference document)

doc2 An Automerge document (comparison document)

Value

A list of raw vectors, where each vector is a serialized change that exists in doc2 but not in doc1.
Returns an empty list if doc1 already contains all changes from doc2.

Examples

Create two independent documents
doc1 <- am_create()
doc1$x <- 1
am_commit(doc1, "Add x")

doc2 <- am_create()
doc2$y <- 2
am_commit(doc2, "Add y")

Find changes in doc2 that aren't in doc1
changes <- am_get_changes_added(doc1, doc2)
length(changes) # 1 change

Apply those changes to doc1
am_apply_changes(doc1, changes)

Now doc1 has both x and y
names(doc1) # "x" "y"

am_get_change_by_hash 15

am_get_change_by_hash Get a specific change by its hash

Description

Retrieves a change from the document’s history by its unique hash identifier. The hash is typically
obtained from am_get_heads() or am_get_changes().

Usage

am_get_change_by_hash(doc, hash)

Arguments

doc An Automerge document

hash A raw vector containing the change hash (must be exactly 32 bytes)

Value

A raw vector containing the serialized change, or NULL if the change hash is not found in the docu-
ment.

Examples

doc <- am_create()
doc$key <- "value"
am_commit(doc, "Add key")

Get the current heads (change hashes)
heads <- am_get_heads(doc)
head_hash <- heads[[1]]

Retrieve the change by its hash
change <- am_get_change_by_hash(doc, head_hash)
str(change) # Raw vector

am_get_heads Get the current heads of a document

Description

Returns the current "heads" of the document - the hashes of the most recent changes. These identify
the current state of the document and can be used for history operations.

Usage

am_get_heads(doc)

16 am_get_history

Arguments

doc An Automerge document

Value

A list of raw vectors, each containing a change hash. Usually there is only one head, but after
concurrent edits there may be multiple heads until they are merged by a subsequent commit.

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "x", 1)
am_commit(doc)

heads <- am_get_heads(doc)
cat("Document has", length(heads), "head(s)\n")

am_get_history Get document history

Description

Returns the full change history of the document as a list of change metadata. This provides a simpler
interface than am_get_changes() for examining document history without needing to work with
serialized changes directly.

Usage

am_get_history(doc)

Arguments

doc An Automerge document

Details

Note: A future implementation will add detailed change introspection functions to extract metadata
like commit messages, timestamps, actor IDs, etc.

Value

A list of raw vectors (serialized changes), one for each change in the document’s history, in chrono-
logical order.

am_get_last_local_change 17

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "x", 1)
am_commit(doc, "Initial")
am_put(doc, AM_ROOT, "x", 2)
am_commit(doc, "Update")

history <- am_get_history(doc)
cat("Document history contains", length(history), "change(s)\n")

am_get_last_local_change

Get the last change made by the local actor

Description

Returns the most recent change created by this document’s actor. Useful for tracking local changes
or implementing undo/redo functionality.

Usage

am_get_last_local_change(doc)

Arguments

doc An Automerge document

Value

A raw vector containing the serialized change, or NULL if no local changes have been made.

Examples

doc <- am_create()

Initially, no local changes
am_get_last_local_change(doc) # NULL

Make a change
doc$key <- "value"
am_commit(doc, "Add key")

Now we have a local change
change <- am_get_last_local_change(doc)
str(change) # Raw vector

18 am_get_path

am_get_path Navigate deep structures with path

Description

Get a value from an Automerge document using a path vector. The path can contain character keys
(for maps), numeric indices (for lists, 1-based), or a mix of both.

Usage

am_get_path(doc, path)

Arguments

doc An Automerge document

path Character vector, numeric vector, or list of mixed types specifying the path to
navigate

Value

The value at the path, or NULL if not found

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "user", list(

name = "Alice",
address = list(city = "NYC", zip = 10001L)

))

Navigate to nested value
am_get_path(doc, c("user", "address", "city")) # "NYC"

Mixed navigation (map key, then list index)
doc$users <- list(

list(name = "Bob"),
list(name = "Carol")

)
am_get_path(doc, list("users", 1, "name")) # "Bob"

am_insert 19

am_insert Insert a value into an Automerge list

Description

This is an alias for am_put() with insert semantics for lists. For lists, am_put() with a numeric
index replaces the element at that index, while am_insert() shifts elements to make room.

Usage

am_insert(doc, obj, pos, value)

Arguments

doc An Automerge document

obj An Automerge object ID (must be a list)

pos Numeric index (1-based, like R vectors) where to insert, or "end" to append

value The value to insert

Value

The document doc (invisibly)

Examples

doc <- am_create()
Create a list and get it
am_put(doc, AM_ROOT, "items", AM_OBJ_TYPE_LIST)
items <- am_get(doc, AM_ROOT, "items")

Insert items
am_insert(doc, items, "end", "first")
am_insert(doc, items, "end", "second")

am_keys Get all keys from an Automerge map

Description

Returns a character vector of all keys in a map.

Usage

am_keys(doc, obj)

20 am_length

Arguments

doc An Automerge document

obj An Automerge object ID (must be a map), or AM_ROOT for the document root

Value

Character vector of keys (empty if map is empty)

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "a", 1)
am_put(doc, AM_ROOT, "b", 2)

keys <- am_keys(doc, AM_ROOT)
keys # c("a", "b")

am_length Get the length of an Automerge map or list

Description

Returns the number of key-value pairs in a map or elements in a list.

Usage

am_length(doc, obj)

Arguments

doc An Automerge document

obj An Automerge object ID, or AM_ROOT for the document root

Value

Integer length/size

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "a", 1)
am_put(doc, AM_ROOT, "b", 2)

len <- am_length(doc, AM_ROOT)
len # 2

am_list 21

am_list Create an Automerge list

Description

Creates an R list with explicit Automerge list type. Use this when you need to create an empty list
or force list type interpretation.

Usage

am_list(...)

Arguments

... Elements to include in the list

Value

A list with class am_list_type

Examples

Empty list (avoids ambiguity)
am_list()

Populated list
am_list("a", "b", "c")

am_load Load an Automerge document from binary format

Description

Deserializes an Automerge document from the standard binary format. The binary format is com-
patible across all Automerge implementations (JavaScript, Rust, etc.).

Usage

am_load(data)

Arguments

data A raw vector containing a serialized Automerge document

Value

An external pointer to the Automerge document with class c("am_doc", "automerge").

22 am_map

Examples

Create, save, and reload
doc1 <- am_create()
bytes <- am_save(doc1)
doc2 <- am_load(bytes)

Save to and load from file
file <- tempfile()
writeBin(am_save(doc1), file)

doc <- am_load(readBin(file, "raw", 1e5))
unlink(file)

am_map Create an Automerge map

Description

Creates an R list with explicit Automerge map type. Use this when you need to create an empty
map or force map type interpretation.

Usage

am_map(...)

Arguments

... Named elements to include in the map

Value

A named list with class am_map_type

Examples

Empty map (avoids ambiguity)
am_map()

Populated map
am_map(key1 = "value1", key2 = "value2")

am_mark 23

am_mark Create a mark on a text range

Description

Marks attach metadata or formatting information to a range of text. Unlike simple annotations,
marks are CRDT-aware and merge correctly across concurrent edits.

Usage

am_mark(obj, start, end, name, value, expand = AM_MARK_EXPAND_NONE)

Arguments

obj An Automerge object ID (must be a text object)

start Integer start position (0-based inter-character position, inclusive)

end Integer end position (0-based inter-character position, exclusive)

name Character string identifying the mark (e.g., "bold", "comment")

value The mark’s value (any Automerge-compatible type: NULL, logical, integer, nu-
meric, character, raw, POSIXct, or am_counter)

expand Character string controlling mark expansion behavior when text is inserted at
boundaries. Options:

"none" Mark does not expand (default)
"before" Mark expands to include text inserted before start
"after" Mark expands to include text inserted after end
"both" Mark expands in both directions

Use the constants AM_MARK_EXPAND_NONE, AM_MARK_EXPAND_BEFORE,
AM_MARK_EXPAND_AFTER, or AM_MARK_EXPAND_BOTH.

Value

The text object obj (invisibly)

Indexing Convention

Mark positions use 0-based indexing (unlike list indices which are 1-based). Positions specify
locations between characters. The range [start, end) includes start but excludes end.

For the text "Hello":

H e l l o
0 1 2 3 4 5 <- positions (0-based, between characters)

Marking positions 0 to 5 marks all 5 characters. Marking 0 to 3 marks "Hel". Positions count
Unicode code points (characters), not bytes.

24 am_marks

Expand Behavior

The expand parameter controls what happens when text is inserted exactly at the mark boundaries:

• "none": New text is never included in the mark

• "before": Text inserted at start is included

• "after": Text inserted at end is included

• "both": Text inserted at either boundary is included

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "text", am_text("Hello World"))
text_obj <- am_get(doc, AM_ROOT, "text")

Mark "Hello" as bold (positions 0-4, characters 0-4)
am_mark(text_obj, 0, 5, "bold", TRUE)

Mark "World" as italic with expansion
am_mark(text_obj, 6, 11, "italic", TRUE,

expand = AM_MARK_EXPAND_BOTH)

Get all marks
marks <- am_marks(text_obj)
marks

am_marks Get all marks in a text object

Description

Retrieves all marks (formatting/metadata annotations) present in a text object at a specific document
state.

Usage

am_marks(obj)

Arguments

obj An Automerge object ID (must be a text object)

Value

A list of marks, where each mark is a list with fields:

name Character string identifying the mark

value The mark’s value (various types supported)

am_marks_at 25

start Integer start position (0-based inter-character position, inclusive)

end Integer end position (0-based inter-character position, exclusive)

Returns an empty list if no marks are present. See am_mark() for indexing details.

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "text", am_text("Hello World"))
text_obj <- am_get(doc, AM_ROOT, "text")

am_mark(text_obj, 0, 5, "bold", TRUE)
am_mark(text_obj, 6, 11, "italic", TRUE)

marks <- am_marks(text_obj)
marks
List of 2 marks with name, value, start, end

am_marks_at Get marks at a specific position

Description

Retrieves marks that include a specific position in a text object. This function efficiently filters
marks at the C level, avoiding the overhead of converting all marks to R objects.

Usage

am_marks_at(obj, position)

Arguments

obj An Automerge object ID (must be a text object)

position Integer position (0-based inter-character position) to query. See am_mark() for
indexing details.

Value

A list of marks that include the specified position. Returns an empty list if no marks cover that
position.

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "text", am_text("Hello World"))
text_obj <- am_get(doc, AM_ROOT, "text")

am_mark(text_obj, 0, 5, "bold", TRUE)
am_mark(text_obj, 2, 7, "underline", TRUE)

26 am_merge

Get marks at position 3 (inside "Hello")
marks_at_3 <- am_marks_at(text_obj, 3)
marks_at_3
List of 2 marks (both "bold" and "underline" include position 3)

am_merge Merge changes from another document

Description

Merges all changes from another Automerge document into this one. This is a one-way merge:
changes flow from other into doc, but other is not modified. For bidirectional synchronization,
use am_sync().

Usage

am_merge(doc, other)

Arguments

doc Target document (will receive changes)

other Source document (provides changes)

Value

The target document doc (invisibly)

Examples

doc1 <- am_create()
doc2 <- am_create()

Make changes in each document
am_put(doc1, AM_ROOT, "x", 1)
am_put(doc2, AM_ROOT, "y", 2)

Merge doc2's changes into doc1
am_merge(doc1, doc2)
Now doc1 has both x and y

am_put 27

am_put Put a value into an Automerge map or list

Description

Inserts or updates a value in an Automerge map or list. The function automatically dispatches to
the appropriate operation based on the object type and key/position type.

Usage

am_put(doc, obj, key, value)

Arguments

doc An Automerge document

obj An Automerge object ID (from nested object), or AM_ROOT for the document root

key For maps: character string key. For lists: numeric index (1-based) or "end" to
append

value The value to store. Supported types:

• NULL - stores null
• Logical - stores boolean (must be scalar)
• Integer - stores integer (must be scalar)
• Numeric - stores double (must be scalar)
• Character - stores string (must be scalar)
• Raw - stores bytes
• AM_OBJ_TYPE_LIST/MAP/TEXT - creates nested object

Value

The document doc (invisibly).

Examples

doc <- am_create()

Put values in root map (returns doc invisibly)
am_put(doc, AM_ROOT, "name", "Alice")
am_put(doc, AM_ROOT, "age", 30L)
am_put(doc, AM_ROOT, "active", TRUE)

Create nested list and retrieve it
am_put(doc, AM_ROOT, "items", AM_OBJ_TYPE_LIST)
items <- am_get(doc, AM_ROOT, "items")

28 am_rollback

am_put_path Set value at path

Description

Set a value in an Automerge document using a path vector. Can optionally create intermediate
objects automatically.

Usage

am_put_path(doc, path, value, create_intermediate = TRUE)

Arguments

doc An Automerge document

path Character vector, numeric vector, or list of mixed types specifying the path to
the value

value Value to set at the path
create_intermediate

Logical. If TRUE, creates intermediate maps as needed. Default TRUE.

Value

The document (invisibly)

Examples

doc <- am_create()

Create nested structure with automatic intermediate objects
am_put_path(doc, c("user", "address", "city"), "Boston")
am_put_path(doc, c("user", "address", "zip"), 02101L)
am_put_path(doc, c("user", "name"), "Alice")

Verify
am_get_path(doc, c("user", "address", "city")) # "Boston"

am_rollback Roll back pending operations

Description

Cancels all pending operations in the current transaction without committing them. This allows you
to discard changes since the last commit.

am_save 29

Usage

am_rollback(doc)

Arguments

doc An Automerge document

Value

The document doc (invisibly)

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "key", "value")
Changed my mind, discard the put
am_rollback(doc)

am_save Save an Automerge document to binary format

Description

Serializes an Automerge document to the standard binary format, which can be saved to disk or
transmitted over a network. The binary format is compatible across all Automerge implementations
(JavaScript, Rust, etc.).

Usage

am_save(doc)

Arguments

doc An Automerge document (created with am_create() or am_load())

Value

A raw vector containing the serialized document

Examples

doc <- am_create()
bytes <- am_save(doc)

Save to file
file <- tempfile()
writeBin(am_save(doc), file)
unlink(file)

30 am_sync

am_set_actor Set the actor ID of a document

Description

Sets the actor ID for an Automerge document. This should typically be done before making any
changes. Changing the actor ID mid-session is not recommended as it can complicate change
attribution.

Usage

am_set_actor(doc, actor_id)

Arguments

doc An Automerge document

actor_id The new actor ID. Can be:

• NULL - Generate new random actor ID
• Character string - Hex-encoded actor ID
• Raw vector - Binary actor ID bytes

Value

The document doc (invisibly)

Examples

doc <- am_create()

Set custom actor ID from hex string
am_set_actor(doc, "0123456789abcdef0123456789abcdef")

Generate new random actor ID
am_set_actor(doc, NULL)

am_sync Bidirectional synchronization

Description

Automatically synchronizes two documents by exchanging messages until they converge to the
same state. This is a high-level convenience function that handles the entire sync protocol automat-
ically.

am_sync_decode 31

Usage

am_sync(doc1, doc2)

Arguments

doc1 First Automerge document

doc2 Second Automerge document

Details

The function exchanges sync messages back and forth between the two documents until both sides
report no more messages to send (am_sync_encode() returns NULL). The Automerge sync protocol
is mathematically guaranteed to converge.

Value

An integer indicating the number of sync rounds completed (invisibly). Both documents are modi-
fied in place to include each other’s changes.

Examples

Create two documents with different changes
doc1 <- am_create()
doc2 <- am_create()

Make changes in each document
am_put(doc1, AM_ROOT, "x", 1)
am_put(doc2, AM_ROOT, "y", 2)

Synchronize them (documents modified in place)
rounds <- am_sync(doc1, doc2)
cat("Synced in", rounds, "rounds\n")

Now both documents have both x and y

am_sync_decode Receive and apply a sync message

Description

Receives a synchronization message from a peer and applies the changes to the local document.
This updates both the document and the sync state to reflect the received changes.

Usage

am_sync_decode(doc, sync_state, message)

32 am_sync_encode

Arguments

doc An Automerge document

sync_state A sync state object (created with am_sync_state_new())

message A raw vector containing an encoded sync message

Value

The document doc (invisibly, for chaining)

Examples

doc <- am_create()
sync_state <- am_sync_state_new()

Receive message from peer
message <- ... (received from network)
am_sync_decode(doc, sync_state, message)

am_sync_encode Generate a sync message

Description

Generates a synchronization message to send to a peer. This message contains the changes that the
peer needs to bring their document up to date with yours.

Usage

am_sync_encode(doc, sync_state)

Arguments

doc An Automerge document

sync_state A sync state object (created with am_sync_state_new())

Details

If the function returns NULL, it means there are no more messages to send (synchronization is com-
plete from this side).

Value

A raw vector containing the encoded sync message, or NULL if no message needs to be sent.

am_sync_state_new 33

Examples

doc <- am_create()
sync_state <- am_sync_state_new()

Generate first sync message
msg <- am_sync_encode(doc, sync_state)
if (!is.null(msg)) {

Send msg to peer...
}

am_sync_state_new Create a new sync state

Description

Creates a new synchronization state for managing communication with a peer. The sync state tracks
what changes have been sent and received, enabling efficient incremental synchronization.

Usage

am_sync_state_new()

Details

IMPORTANT: Sync state is document-independent. The same sync state is used across multiple
sync message exchanges with a specific peer. The document is passed separately to am_sync_encode()
and am_sync_decode().

Value

An external pointer to the sync state with class "am_syncstate".

Examples

Create two documents
doc1 <- am_create()
doc2 <- am_create()

Create sync states for each peer
sync1 <- am_sync_state_new()
sync2 <- am_sync_state_new()

Use with am_sync_encode() and am_sync_decode()

34 am_text_content

am_text Create an Automerge text object

Description

Creates a text object for collaborative character-level editing. Unlike regular strings (which use
last-write-wins semantics), text objects support character-level CRDT merging of concurrent edits,
cursor stability, and marks/formatting.

Usage

am_text(initial = "")

Arguments

initial Initial text content (default "")

Details

Use text objects for collaborative document editing. Use regular strings for metadata, labels, and
IDs (99\

Value

A character vector with class am_text_type

Examples

Empty text object
am_text()

Text with initial content
am_text("Hello, World!")

am_text_content Get text content from a text object

Description

Retrieve the full text content from a text object as a string.

Usage

am_text_content(text_obj)

am_text_splice 35

Arguments

text_obj An Automerge text object ID

Value

Character string with the full text

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "doc", am_text("Hello"))
text_obj <- am_get(doc, AM_ROOT, "doc")

text <- am_text_content(text_obj)
text # "Hello"

am_text_splice Splice text in a text object

Description

Insert or delete characters in a text object. This is the primary way to edit text CRDT objects.

Usage

am_text_splice(text_obj, pos, del_count, text)

Arguments

text_obj An Automerge text object ID

pos Character position to start splice (0-based inter-character position)

del_count Number of characters to delete (counts Unicode code points)

text Text to insert

Value

The text object text_obj (invisibly)

Indexing Convention

Text positions use 0-based indexing (unlike list indices which are 1-based). This is because posi-
tions specify locations between characters, not the characters themselves:

• Position 0 = before the first character

• Position 1 = between 1st and 2nd characters

• Position 5 = after the 5th character

36 am_text_update

For the text "Hello":

H e l l o
0 1 2 3 4 5 <- positions (0-based, between characters)

Positions count Unicode code points (characters), not bytes. The word "Français" counts as 8
characters, matching R’s nchar() behavior.

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "doc", am_text("Hello"))
text_obj <- am_get(doc, AM_ROOT, "doc")

Insert " World" at position 5 (after "Hello")
am_text_splice(text_obj, 5, 0, " World")

Get the full text
am_text_content(text_obj) # "Hello World"

Works naturally with multibyte characters
am_put(doc, AM_ROOT, "greet", am_text(""))
text_obj2 <- am_get(doc, AM_ROOT, "greet")
am_text_splice(text_obj2, 0, 0, "Column café")
Position 11 is after "café" (character index, not bytes)
am_text_splice(text_obj2, 11, 0, "!")
am_text_content(text_obj2) # "Column café!"

am_text_update Update text content

Description

An optimized function for collaborative editing that computes the minimal diff between old and new
text and applies it directly to the text object. This avoids intermediate R object allocation, making
it more efficient than separate diff computation and splice operations.

Usage

am_text_update(text_obj, old_text, new_text)

Arguments

text_obj An Automerge text object ID

old_text The previous text content (single string)

new_text The new text content (single string)

am_uint64 37

Details

Positions use Unicode code points (matching R’s nchar() behavior), not bytes. This means multi-
byte characters like emoji count as single characters.

Value

Invisible NULL (called for side effect)

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "content", am_text("Hello"))
text_obj <- am_get(doc, AM_ROOT, "content")

Efficiently update text by computing and applying diff in one step
am_text_update(text_obj, "Hello", "Hello World")
am_text_content(text_obj) # "Hello World"

Works with Unicode
am_text_update(text_obj, "Hello World", "Hello World!")
am_text_content(text_obj) # "Hello World!"

am_uint64 Create an unsigned 64-bit integer value

Description

Creates an am_uint64 object for storing unsigned 64-bit integers in Automerge documents. This
preserves type fidelity when syncing with other language bindings (JavaScript BigInt, Python int,
etc.).

Usage

am_uint64(value = 0)

Arguments

value Numeric value (default 0). Values beyond 2^53 may lose precision.

Value

An am_uint64 object

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "id", am_uint64(12345))

38 as.character.am_text

am_values Get all values from a map or list

Description

Returns all values from an Automerge map or list as an R list.

Usage

am_values(doc, obj)

Arguments

doc An Automerge document

obj An Automerge object ID, or AM_ROOT for the document root

Value

R list of values

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "a", 1)
am_put(doc, AM_ROOT, "b", 2)
am_put(doc, AM_ROOT, "c", 3)

values <- am_values(doc, AM_ROOT)
values # list(1, 2, 3)

as.character.am_text Convert text object to character string

Description

Extracts the full text content from an Automerge text object as a standard character string.

Usage

S3 method for class 'am_text'
as.character(x, ...)

Arguments

x An Automerge text object

... Additional arguments (unused)

as.list.am_doc 39

Value

Character string with the full text content

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "notes", am_text("Hello World"))
text_obj <- am_get(doc, AM_ROOT, "notes")

text_string <- as.character(text_obj)
text_string # "Hello World"

identical(as.character(text_obj), am_text_content(text_obj)) # TRUE

as.list.am_doc Convert document root to R list

Description

Recursively converts the root of an Automerge document to a standard R list. Maps become named
lists, lists become unnamed lists, and nested objects are recursively converted.

Usage

S3 method for class 'am_doc'
as.list(x, ...)

Arguments

x An Automerge document

... Additional arguments (unused)

Value

Named list with document contents

Examples

doc <- am_create()
doc$name <- "Alice"
doc$age <- 30L

as.list(doc) # list(name = "Alice", age = 30L)

40 as_automerge

as_automerge Convert R list to Automerge document

Description

Converts an R list to an Automerge document. This leverages the recursive conversion built into
am_put() from Phase 3, allowing nested structures to be created in a single call.

Usage

as_automerge(x, doc = NULL, actor_id = NULL)

Arguments

x R list, vector, or scalar value to convert

doc Optional existing Automerge document. If NULL, creates a new one.

actor_id Optional actor ID for new documents (raw bytes or hex string)

Value

An Automerge document

Examples

Convert nested list to Automerge
data <- list(

name = "Alice",
age = 30L,
scores = list(85, 90, 95),
metadata = list(

created = Sys.time(),
tags = list("user", "active")

)
)

doc <- as_automerge(data)
doc[["name"]] # "Alice"
doc[["age"]] # 30L

automerge-constants 41

automerge-constants Automerge Constants

Description

Constants used throughout the automerge package for object types, root references, and mark ex-
pansion modes.

Usage

AM_ROOT

AM_OBJ_TYPE_LIST

AM_OBJ_TYPE_MAP

AM_OBJ_TYPE_TEXT

AM_MARK_EXPAND_NONE

AM_MARK_EXPAND_BEFORE

AM_MARK_EXPAND_AFTER

AM_MARK_EXPAND_BOTH

Format

An object of class NULL of length 0.

An object of class am_obj_type of length 1.

An object of class am_obj_type of length 1.

An object of class am_obj_type of length 1.

An object of class character of length 1.

An object of class character of length 1.

An object of class character of length 1.

An object of class character of length 1.

Root Object

AM_ROOT Reference to the root object of an Automerge document. Use this as the obj parameter
when operating on the top-level map. Value is NULL which maps to the C API’s AM_ROOT.

42 extract-am_doc

Object Types

String constants for creating Automerge objects:

AM_OBJ_TYPE_LIST Create a list (array) object. Lists are ordered sequences accessed by nu-
meric index (1-based in R).

AM_OBJ_TYPE_MAP Create a map (object) object. Maps are unordered key-value collections
accessed by string keys.

AM_OBJ_TYPE_TEXT Create a text object for collaborative editing. Text objects support character-
level CRDT operations, cursor stability, and formatting marks. Use text objects for collabora-
tive document editing rather than regular strings (which use last-write-wins semantics).

Mark Expansion Modes

Constants for controlling how text marks expand when text is inserted at their boundaries (used with
am_mark):

AM_MARK_EXPAND_NONE Mark does not expand when text is inserted at either boundary.

AM_MARK_EXPAND_BEFORE Mark expands to include text inserted immediately before its
start position.

AM_MARK_EXPAND_AFTER Mark expands to include text inserted immediately after its end
position.

AM_MARK_EXPAND_BOTH Mark expands to include text inserted at either boundary (before
start or after end).

extract-am_doc Extract from Automerge document root

Description

Extract values from the root of an Automerge document using [[or $. These operators provide
R-idiomatic access to document data.

Usage

S3 method for class 'am_doc'
x[[i]]

S3 method for class 'am_doc'
x$name

Arguments

x An Automerge document

i Key name (character)

name Key name (for $ operator)

extract-am_object 43

Value

The value at the specified key

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "name", "Alice")
am_put(doc, AM_ROOT, "age", 30L)

doc[["name"]] # "Alice"
doc$age # 30L

extract-am_object Extract from Automerge object

Description

Extract values from an Automerge object (map or list) using [[or $.

Usage

S3 method for class 'am_object'
x[[i]]

S3 method for class 'am_object'
x$name

Arguments

x An Automerge object

i Key name (character) for maps, or position (integer) for lists

name Key name (for $ operator, maps only)

Value

The value at the specified key/position

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "user", list(name = "Bob", age = 25L))
user <- am_get(doc, AM_ROOT, "user")

user[["name"]] # "Bob"
user$age # 25L

44 length.am_doc

from_automerge Convert Automerge document to R list

Description

Converts an Automerge document to a standard R list. This is equivalent to as.list.am_doc().

Usage

from_automerge(doc)

Arguments

doc An Automerge document

Value

Named list with document contents

Examples

doc <- am_create()
doc$name <- "Alice"
doc$age <- 30L

from_automerge(doc) # list(name = "Alice", age = 30L)

length.am_doc Get length of document root

Description

Returns the number of keys in the root map of an Automerge document.

Usage

S3 method for class 'am_doc'
length(x)

Arguments

x An Automerge document

Value

Integer length

length.am_object 45

Examples

doc <- am_create()
doc$a <- 1
doc$b <- 2
length(doc) # 2

length.am_object Get length of Automerge object

Description

Returns the number of elements/keys in an Automerge object.

Usage

S3 method for class 'am_object'
length(x)

Arguments

x An Automerge object

Value

Integer length

names.am_doc Get names from document root

Description

Returns the keys from the root map of an Automerge document.

Usage

S3 method for class 'am_doc'
names(x)

Arguments

x An Automerge document

Value

Character vector of key names

46 replace-am_doc

Examples

doc <- am_create()
doc$name <- "Alice"
doc$age <- 30L
names(doc) # c("name", "age")

names.am_map Get names from Automerge map object

Description

Returns the keys from a map object.

Usage

S3 method for class 'am_map'
names(x)

Arguments

x An Automerge map object

Value

Character vector of key names

replace-am_doc Replace in Automerge document root

Description

Replace or insert values at the root of an Automerge document using [[<- or $<-. These operators
provide R-idiomatic modification.

Usage

S3 replacement method for class 'am_doc'
x[[i]] <- value

S3 replacement method for class 'am_doc'
x$name <- value

replace-am_object 47

Arguments

x An Automerge document

i Key name (character)

value Value to store

name Key name (for $<- operator)

Value

The document (invisibly)

Examples

doc <- am_create()
doc[["name"]] <- "Bob"
doc$age <- 25L

replace-am_object Replace in Automerge object

Description

Replace or insert values in an Automerge object using [[<- or $<-.

Usage

S3 replacement method for class 'am_object'
x[[i]] <- value

S3 replacement method for class 'am_object'
x$name <- value

Arguments

x An Automerge object

i Key name (character) for maps, or position (integer) for lists

value Value to store

name Key name (for $<- operator, maps only)

Value

The object (invisibly)

48 replace-am_object

Examples

doc <- am_create()
am_put(doc, AM_ROOT, "user", list(name = "Bob", age = 25L))
user <- am_get(doc, AM_ROOT, "user")

user[["name"]] <- "Alice"
user$age <- 30L

Index

∗ datasets
automerge-constants, 41

[[.am_doc (extract-am_doc), 42
[[.am_object (extract-am_object), 43
[[<-.am_doc (replace-am_doc), 46
[[<-.am_object (replace-am_object), 47
$.am_doc (extract-am_doc), 42
$.am_object (extract-am_object), 43
$<-.am_doc (replace-am_doc), 46
$<-.am_object (replace-am_object), 47

am_apply_changes, 3
am_commit, 4
am_counter, 5
am_counter_increment, 5
am_create, 6
am_cursor, 7
am_cursor(), 9
am_cursor_position, 8
am_cursor_position(), 8
am_delete, 9
am_delete_path, 10
am_fork, 10
am_get, 11
am_get_actor, 12
am_get_actor(), 12
am_get_actor_hex, 12
am_get_actor_hex(), 12
am_get_change_by_hash, 15
am_get_changes, 13
am_get_changes_added, 14
am_get_heads, 15
am_get_history, 16
am_get_last_local_change, 17
am_get_path, 18
am_insert, 19
am_keys, 19
am_length, 20
am_list, 21
am_load, 21

am_map, 22
am_mark, 23
am_mark(), 25
AM_MARK_EXPAND_AFTER, 23
AM_MARK_EXPAND_AFTER

(automerge-constants), 41
AM_MARK_EXPAND_BEFORE, 23
AM_MARK_EXPAND_BEFORE

(automerge-constants), 41
AM_MARK_EXPAND_BOTH, 23
AM_MARK_EXPAND_BOTH

(automerge-constants), 41
AM_MARK_EXPAND_NONE, 23
AM_MARK_EXPAND_NONE

(automerge-constants), 41
am_marks, 24
am_marks_at, 25
am_merge, 26
AM_OBJ_TYPE_LIST (automerge-constants),

41
AM_OBJ_TYPE_MAP (automerge-constants),

41
AM_OBJ_TYPE_TEXT (automerge-constants),

41
am_put, 27
am_put_path, 28
am_rollback, 28
AM_ROOT (automerge-constants), 41
am_save, 29
am_set_actor, 30
am_sync, 30
am_sync(), 26
am_sync_decode, 31
am_sync_encode, 32
am_sync_state_new, 33
am_text, 34
am_text_content, 34
am_text_splice, 35
am_text_update, 36

49

50 INDEX

am_uint64, 37
am_values, 38
as.character.am_text, 38
as.list.am_doc, 39
as_automerge, 40
automerge-constants, 41

extract-am_doc, 42
extract-am_object, 43

from_automerge, 44

length.am_doc, 44
length.am_object, 45

names.am_doc, 45
names.am_map, 46

replace-am_doc, 46
replace-am_object, 47

	am_apply_changes
	am_commit
	am_counter
	am_counter_increment
	am_create
	am_cursor
	am_cursor_position
	am_delete
	am_delete_path
	am_fork
	am_get
	am_get_actor
	am_get_actor_hex
	am_get_changes
	am_get_changes_added
	am_get_change_by_hash
	am_get_heads
	am_get_history
	am_get_last_local_change
	am_get_path
	am_insert
	am_keys
	am_length
	am_list
	am_load
	am_map
	am_mark
	am_marks
	am_marks_at
	am_merge
	am_put
	am_put_path
	am_rollback
	am_save
	am_set_actor
	am_sync
	am_sync_decode
	am_sync_encode
	am_sync_state_new
	am_text
	am_text_content
	am_text_splice
	am_text_update
	am_uint64
	am_values
	as.character.am_text
	as.list.am_doc
	as_automerge
	automerge-constants
	extract-am_doc
	extract-am_object
	from_automerge
	length.am_doc
	length.am_object
	names.am_doc
	names.am_map
	replace-am_doc
	replace-am_object
	Index

