
Package ‘dqrng’
November 29, 2023

Type Package

Title Fast Pseudo Random Number Generators

Version 0.3.2

Description Several fast random number generators are provided as C++
header only libraries: The PCG family by O'Neill (2014
<https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf>) as well as
Xoroshiro128+ and Xoshiro256+ by Blackman and Vigna (2018
<arXiv:1805.01407>). In addition fast functions for generating random
numbers according to a uniform, normal and exponential distribution
are included. The latter two use the Ziggurat algorithm originally
proposed by Marsaglia and Tsang (2000, <doi:10.18637/jss.v005.i08>).
The fast sampling methods support unweighted sampling both with and without
replacement. These functions are exported to R and as a C++ interface and are
enabled for use with the default 64 bit generator from the PCG family,
Xoroshiro128+ and Xoshiro256+ as well as the 64 bit version of the 20 rounds
Threefry engine (Salmon et al., 2011, <doi:10.1145/2063384.2063405>) as
provided by the package 'sitmo'.

License AGPL-3 | file LICENSE

Depends R (>= 3.5.0)

Imports Rcpp (>= 0.12.16)

LinkingTo Rcpp, BH (>= 1.64.0-1), sitmo (>= 2.0.0)

RoxygenNote 7.2.3

Suggests testthat, knitr, rmarkdown, mvtnorm (>= 1.2-3), bench, sitmo

VignetteBuilder knitr

URL https://daqana.github.io/dqrng/, https://github.com/daqana/dqrng

BugReports https://github.com/daqana/dqrng/issues

Encoding UTF-8

NeedsCompilation yes

Author Ralf Stubner [aut, cre],
daqana GmbH [cph],
David Blackman [ctb],

1

https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://arxiv.org/abs/1805.01407
https://doi.org/10.18637/jss.v005.i08
https://doi.org/10.1145/2063384.2063405
https://daqana.github.io/dqrng/
https://github.com/daqana/dqrng
https://github.com/daqana/dqrng/issues

2 dqrng-package

Melissa O'Neill [ctb],
Sebastiano Vigna [ctb],
Aaron Lun [ctb],
Kyle Butts [ctb]

Maintainer Ralf Stubner <ralf.stubner@gmail.com>

Repository CRAN

Date/Publication 2023-11-29 21:20:02 UTC

R topics documented:
dqrng-package . 2
dqrmvnorm . 3
dqRNGkind . 4
dqsample . 6
generateSeedVectors . 6

Index 8

dqrng-package dqrng: Fast Pseudo Random Number Generators

Description

Several fast random number generators are provided as C++ header only libraries: The PCG family
by O’Neill (2014 https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf) as well as Xoroshiro128+
and Xoshiro256+ by Blackman and Vigna (2018 arXiv:1805.01407). In addition fast functions for
generating random numbers according to a uniform, normal and exponential distribution are in-
cluded. The latter two use the Ziggurat algorithm originally proposed by Marsaglia and Tsang
(2000, doi:10.18637/jss.v005.i08). The fast sampling methods support unweighted sampling both
with and without replacement. These functions are exported to R and as a C++ interface and
are enabled for use with the default 64 bit generator from the PCG family, Xoroshiro128+ and
Xoshiro256+ as well as the 64 bit version of the 20 rounds Threefry engine (Salmon et al., 2011,
doi:10.1145/2063384.2063405) as provided by the package ’sitmo’.

Author(s)

Maintainer: Ralf Stubner <ralf.stubner@gmail.com>

Other contributors:

• daqana GmbH [copyright holder]

• David Blackman [contributor]

• Melissa O’Neill <oneill@pcg-random.org> [contributor]

• Sebastiano Vigna <vigna@acm.org> [contributor]

• Aaron Lun [contributor]

• Kyle Butts <kyle.butts@colorado.edu> [contributor]

https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://arxiv.org/abs/1805.01407
https://doi.org/10.18637/jss.v005.i08
https://doi.org/10.1145/2063384.2063405

dqrmvnorm 3

See Also

Useful links:

• https://daqana.github.io/dqrng/

• https://github.com/daqana/dqrng

• Report bugs at https://github.com/daqana/dqrng/issues

dqrmvnorm Multivariate Distributions

Description

Multivariate Distributions

Usage

dqrmvnorm(n, ...)

Arguments

n number of observations

... forwarded to rmvnorm or rmvt

Value

numeric matrix of multivariate normal distributed variables

See Also

rmvnorm

Examples

sigma <- matrix(c(4,2,2,3), ncol=2)
x <- dqrmvnorm(n=500, mean=c(1,2), sigma=sigma)
colMeans(x)
var(x)
plot(x)

https://daqana.github.io/dqrng/
https://github.com/daqana/dqrng
https://github.com/daqana/dqrng/issues

4 dqRNGkind

dqRNGkind R interface

Description

The dqrng package provides several fast random number generators together with fast functions
for generating random numbers according to a uniform, normal and exponential distribution. These
functions are modeled after the base functions set.seed, RNGkind, runif, rnorm, and rexp.

dqrrademacher uses a fast algorithm to generate random Rademacher variables (-1 and 1 with
equal probability). To do so, it generates a random 64 bit integer and then uses each bit to generate
a 0/1 variable. This generates 64 integers per random number generation.

Usage

dqRNGkind(kind, normal_kind = "ignored")

dqrunif(n, min = 0, max = 1)

dqrnorm(n, mean = 0, sd = 1)

dqrexp(n, rate = 1)

dqrrademacher(n)

dqset.seed(seed, stream = NULL)

Arguments

kind string specifying the RNG (see details)

normal_kind ignored; included for compatibility with RNGkind

n number of observations

min lower limit of the uniform distribution

max upper limit of the uniform distribution

mean mean value of the normal distribution

sd standard deviation of the normal distribution

rate rate of the exponential distribution

seed integer scalar to seed the random number generator, or an integer vector of
length 2 representing a 64-bit seed. Maybe NULL, see details.

stream integer used for selecting the RNG stream; either a scalar or a vector of length 2

dqRNGkind 5

Details

Supported RNG kinds:

pcg64 The default 64 bit variant from the PCG family developed by Melissa O’Neill. See https:
//www.pcg-random.org/ for more details.

Xoroshiro128+ and Xoshiro256+ RNGs developed by David Blackman and Sebastiano Vigna.
They are used as default RNGs in Erlang and Lua. See https://xoshiro.di.unimi.it/ for
more details.

Threefry The 64 bit version of the 20 rounds Threefry engine as provided by sitmo-package

Xoroshiro128+ is the default since it is the fastest generator provided by this package.

The functions dqrnorm and dqrexp use the Ziggurat algorithm as provided by boost.random.

See generateSeedVectors for rapid generation of integer-vector seeds that provide 64 bits of
entropy. These allow full exploration of the state space of the 64-bit RNGs provided in this package.

If the provided seed is NULL, a seed is generated from R’s RNG without state alteration.

Value

dqrunif, dqrnorm, and dqrexp return a numeric vector of length n. dqrrademacher returns an
integer vector of length n.

See Also

set.seed, RNGkind, runif, rnorm, and rexp

Examples

library(dqrng)

Set custom RNG.
dqRNGkind("Xoshiro256+")

Use an integer scalar to set a seed.
dqset.seed(42)

Use integer scalars to set a seed and the stream.
dqset.seed(42, 123)

Use an integer vector to set a seed.
dqset.seed(c(31311L, 24123423L))

Use an integer vector to set a seed and a scalar to select the stream.
dqset.seed(c(31311L, 24123423L), 123)

Random sampling from distributions.
dqrunif(5, min = 2, max = 10)
dqrexp(5, rate = 4)
dqrnorm(5, mean = 5, sd = 3)

https://www.pcg-random.org/
https://www.pcg-random.org/
https://xoshiro.di.unimi.it/

6 generateSeedVectors

dqsample Unbiased Random Samples and Permutations

Description

Unbiased Random Samples and Permutations

Usage

dqsample(x, size, replace = FALSE, prob = NULL)

dqsample.int(n, size = n, replace = FALSE, prob = NULL)

Arguments

x either a vector of one or more elements from which to choose, or a positive
integer.

size a non-negative integer giving the number of items to choose.

replace should sampling be with replacement?

prob a vector of probability weights for obtaining the elements of the vector being
sampled.

n a positive number, the number of items to choose from.

See Also

vignette("sample", package = "dqrng"), sample and sample.int

generateSeedVectors Generate seed as a integer vector

Description

Generate seed as a integer vector

Usage

generateSeedVectors(nseeds, nwords = 2L)

Arguments

nseeds Integer scalar, number of seeds to generate.

nwords Integer scalar, number of words to generate per seed.

generateSeedVectors 7

Details

Each seed is encoded as an integer vector with the most significant bits at the start of the vector.
Each integer vector is converted into an unsigned integer (in C++ or otherwise) by the following
procedure:

1. Start with a sum of zero.

2. Add the first value of the vector.

3. Left-shift the sum by 32.

4. Add the next value of the vector, and repeat.

The aim is to facilitate R-level generation of seeds with sufficient randomness to cover the entire
state space of pseudo-random number generators that require more than the ~32 bits available in an
int. It also preserves the integer nature of the seed, thus avoiding problems with casting double-
precision numbers to integers.

It is possible for the seed vector to contain NA_integer_ values. This should not be cause for alarm,
as R uses -INT_MAX to encode missing values in integer vectors.

Value

A list of length n, where each element is an integer vector that contains nwords words (i.e., 32*nwords
bits) of randomness.

Author(s)

Aaron Lun

Examples

generateSeedVectors(10, 2)

generateSeedVectors(5, 4)

Index

dqrexp (dqRNGkind), 4
dqrmvnorm, 3
dqrng (dqrng-package), 2
dqrng-package, 2
dqRNGkind, 4
dqrnorm (dqRNGkind), 4
dqrrademacher (dqRNGkind), 4
dqrunif (dqRNGkind), 4
dqsample, 6
dqset.seed (dqRNGkind), 4

generateSeedVectors, 5, 6

rexp, 4, 5
rmvnorm, 3
rmvt, 3
RNGkind, 4, 5
rnorm, 4, 5
runif, 4, 5

sample, 6
sample.int, 6
set.seed, 4, 5

8

	dqrng-package
	dqrmvnorm
	dqRNGkind
	dqsample
	generateSeedVectors
	Index

