
Package ‘nls2’
October 13, 2022

Version 0.3-3

Date 2022-05-01

Title Non-Linear Regression with Brute Force

Author G. Grothendieck

Maintainer G. Grothendieck <ggrothendieck@gmail.com>

Description Adds brute force and multiple starting values to nls.

Depends proto, stats

Suggests nlstools, lhs

License GPL-2

BugReports https://github.com/ggrothendieck/nls2/issues

URL https://github.com/ggrothendieck/nls2

NeedsCompilation no

Repository CRAN

Date/Publication 2022-05-02 05:30:02 UTC

R topics documented:
nls2 . 1

Index 5

nls2 Nonlinear Least Squares with Brute Force

Description

Determine the nonlinear least-squares estimates of the parameters of a nonlinear model.

1

https://github.com/ggrothendieck/nls2/issues
https://github.com/ggrothendieck/nls2

2 nls2

Usage

nls2(formula, data = parent.frame(), start, control = nls.control(),
algorithm = c("default", "plinear", "port", "brute-force",
"grid-search", "random-search", "lhs",
"plinear-brute", "plinear-random", "plinear-lhs"),
trace = FALSE, weights, subset, ..., all = FALSE)

Arguments

formula same as formula parameter in nls.

data same as data parameter in nls except that if subset is specified then data is
not optional and must be specified as a data.frame.

start same as start parameter in nls except that it may alternately be (1) a two
row data frame in which case nls2 will start at each point on a grid chosen to
have maxiter iterations if "algorithm" is "brute-force" or "grid-search"
or will start at maxiter random points within the defined rectangle, (2) a data
frame with more than two rows in which case an optimization will be run with
the starting value defined by each row successively or (3) it may be an nls or
other object having a coef method in which case the coef of the object will
be used as the starting value. The list of vectors format supported in nls for
grouped data is not supported.

control same as control parameter in nls.

algorithm same as algorithm parameter in nls with the addition of the "brute-force"
(alternately called "grid-search"), "random-search", "lhs" (Latin Hyper-
cube Sampling), "plinear-brute", "plinear-random" and "plinear-lhs"
options.

trace If TRUE certain intermediate results shown.

weights For weighted regression.

subset Subset argument as in nls

... other arguments passed to nls.

all if all is true then a list of nls objects is returned, one for each row in start;
otherwise, only the one with least residual sum of squares is returned.

Details

Similar to nls except that start and algorithm have expanded values and there is a new all
argument.

nls2 generates a grid or random set of starting values and then optionally performs an nls opti-
mization starting at each one.

If algorithm is "brute-force" (or its synonym "grid-search") then (1) if start is a two row
data frame then a grid is created from the rectangle defined by the two rows such that the grid has
at most maxiter points with the residuals sum of squares being calculated at each generated point.
(2) If start is a data frame with more than two rows then the residual sum of squares is evaluated
at each row.

nls2 3

If algorithm is "random-search" then (1) if start is a two row data frame then maxiter points
are uniformly sampled from the rectangle it defines or (2) if start is a data frame with more than
two rows then the "maxiter" rows are sampled without replacement.

"plinear-brute" and "plinear-random" are like "brute-force" and "random-search" except
that the formula is a plinear-style formula and only starting values for the non-linear parameters are
given.

If algorithm is neither of the above two values then if start has more than one row a two phase
procedure is undertaken. (1) if start is a two row data frame then a random set of points is
generated and then the optimization is carried out starting from each of those points.

(2) If start is a data frame with more than two rows then the optimization is carried out starting
from each row.

In any of the above cases if all=FALSE, the default, then an "nls" object at the value with the least
residual sum of squares returned; otherwise, if all=TRUE then a list of "nls" objects is returned
with one component per starting value.

If the starting value is an "nls" object then the coef of that object will be used as the starting value.

See Also

nls.

Examples

y <- c(44,36,31,39,38,26,37,33,34,48,25,22,44,5,9,13,17,15,21,10,16,22,
13,20,9,15,14,21,23,23,32,29,20,26,31,4,20,25,24,32,23,33,34,23,28,30,10,29,
40,10,8,12,13,14,56,47,44,37,27,17,32,31,26,23,31,34,37,32,26,37,28,38,35,27,
34,35,32,27,22,23,13,28,13,22,45,33,46,37,21,28,38,21,18,21,18,24,18,23,22,
38,40,52,31,38,15,21)

x <- c(26.22,20.45,128.68,117.24,19.61,295.21,31.83,30.36,13.57,60.47,
205.30,40.21,7.99,1.18,5.40,13.37,4.51,36.61,7.56,10.30,7.29,9.54,6.93,12.60,
2.43,18.89,15.03,14.49,28.46,36.03,38.52,45.16,58.27,67.13,92.33,1.17,
29.52,84.38,87.57,109.08,72.28,66.15,142.27,76.41,105.76,73.47,1.71,305.75,
325.78,3.71,6.48,19.26,3.69,6.27,1689.67,95.23,13.47,8.60,96.00,436.97,
472.78,441.01,467.24,1169.11,1309.10,1905.16,135.92,438.25,526.68,88.88,31.43,
21.22,640.88,14.09,28.91,103.38,178.99,120.76,161.15,137.38,158.31,179.36,
214.36,187.05,140.92,258.42,85.86,47.70,44.09,18.04,127.84,1694.32,34.27,
75.19,54.39,79.88,63.84,82.24,88.23,202.66,148.93,641.76,20.45,145.31,
27.52,30.70)

Example 1
brute force followed by nls optimization

fo <- y ~ Const + B * (x ^ A)

pass our own set of starting values
returning result of brute force search as nls object
st1 <- expand.grid(Const = seq(-100, 100, len = 4),
B = seq(-100, 100, len = 4), A = seq(-1, 1, len = 4))
mod1 <- nls2(fo, start = st1, algorithm = "brute-force")

4 nls2

mod1
use nls object mod1 just calculated as starting value for
nls optimization. Same as: nls(fo, start = coef(mod1))
nls2(fo, start = mod1)

Example 2

pass a 2-row data frame and let nls2 calculate grid
st2 <- data.frame(Const = c(-100, 100), B = c(-100, 100), A = c(-1, 1))
mod2 <- nls2(fo, start = st2, algorithm = "brute-force")
mod2
use nls object mod1 just calculated as starting value for
nls optimization. Same as: nls(fo, start = coef(mod2))
nls2(fo, start = mod2)

Example 3

Create same starting values as in Example 2
running an nls optimization from each one and picking best.
This one does an nls optimization for every random point
generated whereas Example 2 only does a single nls optimization
nls2(fo, start = st2, control = nls.control(warnOnly = TRUE))

Example 4

Investigate singular jacobian at the start value
Note that this cannot be done with nls since the singular jacobian at
the initial conditions would stop it with an error.

DF1 <- data.frame(y=1:9, one=rep(1,9))
xx <- nls2(y~(a+2*b)*one, DF1, start = c(a=1, b=1), algorithm = "brute-force")
svd(xxmRmat())[-2]

Example 5

plinear-lhs example
Thanks to John Nash for suggesting this truncation of the
Ratkowsky2 dataset. Full dataset: data(Ratkowsky2, package = "NISTnls")
Use plinear-lhs to get starting values and then run nls via nls2 for
final answer.

pastured <- data.frame(
time=c(9, 14, 21, 28, 42, 57, 63, 70, 79),
yield= c(8.93, 10.8, 18.59, 22.33, 39.35, 56.11, 61.73, 64.62, 67.08))

fo <- yield ~ cbind(1, - exp(-exp(t3+t4*log(time))))

gstart <- data.frame(t3 = c(-10, 10), t4 = c(1, 8))
set.seed(123)
junk <- capture.output(fm0 <- nls2(fo, data = pastured, start = gstart, alg = "plinear-lhs",

control = nls.control(maxiter = 1000)), type = "message")
nls2(fo, pastured, start = fm0, alg = "plinear")

Index

∗ models
nls2, 1

∗ nonlinear
nls2, 1

∗ regression
nls2, 1

nls, 3
nls2, 1

5

	nls2
	Index

