Package ‘phinterval’

February 3, 2026

Title Set Operations on Time Intervals
Version 1.0.0

Description Implements the phinterval vector class for representing time
spans that may contain gaps (disjoint intervals) or be empty. This class
generalizes the 'lubridate’ package's interval class to support vectorized
set operations (intersection, union, difference, complement) that always
return a valid time span, even when disjoint or empty intervals are created.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3

URL https://github.com/EthanSansom/phinterval,
https://ethansansom.github.io/phinterval/

BugReports https://github.com/EthanSansom/phinterval/issues
Depends R (>=4.0.0)

Imports lubridate, methods, pillar, Rcpp, rlang, tibble, tzdb, vctrs
(>=0.7.0)

Suggests dplyr, knitr, rmarkdown, testthat (>= 3.0.0), tidyr, withr
Config/testthat/edition 3

LinkingTo Rcpp, tzdb

VignetteBuilder knitr

SystemRequirements C++17

Config/Needs/website rmarkdown

NeedsCompilation yes

Author Ethan Sansom [aut, cre, cph] (ORCID:
<https://orcid.org/0009-0000-1573-0186>)

Maintainer Ethan Sansom <ethan.sansom29@gmail.com>
Repository CRAN
Date/Publication 2026-02-03 12:40:06 UTC

https://github.com/EthanSansom/phinterval
https://ethansansom.github.io/phinterval/
https://github.com/EthanSansom/phinterval/issues
https://orcid.org/0009-0000-1573-0186

2 as_duration

Contents
as_duration L L L e e e e e e e e e e e 2
as_phinterval 3
hole e 4
1S_hole e 5
is_phinterval e 6
is_phintish 6
is_recognized_tZONE i e e e e e e e 7
DUSPANS « v v vt v e 8
phinterval 9
phinterval-accessorso e e e 11
phinterval-set-operations L. e e e e e 13
phinterval_options 14
phint_invert e e 15
phint_length L 16
phint_overlaps L L 18
phint_sift e e 19
Phint_unnest. e e e e e e e 20
phint_within oL 21
squash . . . L 23

Index 26

as_duration Convert a phinterval to a duration
Description

as_duration() convertsa lubridate: :interval () or phinterval() vectorintoa lubridate: :duration()
vector. The resulting duration measures the length of time in seconds within each element of the
interval or phinterval.

as_duration() is a wrapper around lubridate: :as.duration().

Usage
as_duration(x, ...)

Default S3 method:
as_duration(x, ...)

S3 method for class 'phinterval'
as_duration(x, ...)

Arguments

X [phinterval / Intervall]
An object to convert.

Parameters passed to other methods. Currently unused.

as_phinterval 3

Value

A <Duration> vector the same length as x.

Examples

monday <- interval(as.Date("”2025-11-10"), as.Date("2025-11-11"))
friday <- interval(as.Date("2025-11-14"), as.Date("2025-11-15"))
mon_and_fri <- phint_union(monday, friday)

as_duration(c(mon_and_fri, monday))

as_duration(mon_and_fri) == as_duration(monday) + as_duration(friday)
as_phinterval Convert an interval or datetime vector into a phinterval
Description

as_phinterval () converts a lubridate: :interval (), Date, POSIXct, or POSIXIt vector into an
equivalent <phinterval> vector.

Usage

as_phinterval(x, ...)

Default S3 method:
as_phinterval(x, ...)

S3 method for class 'Interval'

as_phinterval(x, ...)
Arguments
X [Interval / Date / POSIXct / POSIX1t]

An object to convert.

Additional arguments passed to methods. Currently unused.

Details

Negative intervals (where start > end) are standardized to positive intervals via lubridate: :int_standardize().

Datetime vectors (Date, POSIXct, POSIXIt) are converted into instantaneous intervals where the
start and end are identical.

Spans with partially missing endpoints (e.g., interval(NA, end) or interval(start, NA)) are
converted to a fully NA element.

Value

A <phinterval> vector the same length as x.

4 hole

See Also

phinterval()

Examples

Convert Interval vector

years <- interval(
start = as.Date(c("2021-01-01", "2023-01-01")),
end = as.Date(c("2022-01-01", "2024-01-01"))

)

as_phinterval(years)

Negative intervals are standardized
negative <- interval(as.Date("2000-10-11"), as.Date("2000-10-01"))
as_phinterval(negative)

Partially missing endpoints become fully NA
partial_na <- interval(NA, as.Date("1999-08-02"))
as_phinterval(partial_na)

Datetime vectors become instantaneous intervals
as_phinterval(as.Date(c("2000-10-11", "2001-05-03")))

hole Create a hole phinterval

Description

hole() creates a <phinterval> vector where each element is a hole (an empty set of time spans).

Usage
hole(n = 1L, tzone = "")
Arguments
n [integer(1)]
The number of hole elements to create. Must be a positive whole number.
tzone [character(1)]
A time zone to display the <phinterval> in. Defaults to "".
Details

A hole is a phinterval element with zero time spans, representing an empty interval. Holes are useful
as placeholders or for representing the absence of time periods in interval algebra operations.

is_hole

Value

A <phinterval> vector of length n where each element is a <hole>.

Examples

Create a single hole
hole()

Create multiple holes
hole(3)

Specify time zone
hole(tzone = "UTC")

Holes can be combined with other phintervals
jan <- phinterval(as.Date("2000-01-01"), as.Date("2000-02-01"))
c(jan, hole(), jan)

is_hole Test for empty intervals

Description

is_hole() checks for <hole> (empty) time spans in phint.

Usage

is_hole(phint)

Arguments
phint [phinterval / Intervall
A <phinterval> or <Interval> vector.
Value

A logical vector the same length as phint.

Examples

Detect holes

y2000 <- interval(as.Date("2000-01-01"), as.Date("2001-01-01"))
y2025 <- interval(as.Date("2025-01-01"), as.Date("2025-01-01"))
is_hole(c(hole(), y2000, hole(), y2025, NA))

The intersection of disjoint intervals is a hole
is_hole(phint_intersect(y2000, y2025))

6 is_phintish

is_phinterval Test if the object is a phinterval

Description

This function returns TRUE for <phinterval> vectors and returns FALSE otherwise.

Usage

is_phinterval(x)

Arguments

X An object to test.

Value

TRUE if x is a <phinterval>, FALSE otherwise.

Examples

is_phinterval(phinterval())
is_phinterval(interval())

is_phintish Test if the object is a phinterval or interval

Description

This function returns TRUE for <phinterval>and <Interval> vectors and returns FALSE otherwise.

Usage

is_phintish(x)

Arguments

X An object to test.

Value

TRUE if x is a <phinterval> or <Interval>, FALSE otherwise.

is_recognized_tzone 7

Examples

is_phinterval(phinterval())
is_phinterval(interval())
is_phinterval(as.Date("2020-01-01"))

is_recognized_tzone Test if the object is a recognized time zone

Description

is_recognized_tzone() returns TRUE for strings that are recognized IANA time zone names, and
FALSE otherwise.

Usage

is_recognized_tzone(x)

Arguments

X An object to test.

Details

Recognized time zones are those listed in tzdb: : tzdb_names (), which provides an up-to-date copy
of time zones from the IANA time zone database.

<phinterval> vectors with an unrecognized time zone are formatted using the "UTC" time zone
with a warning.

Value

TRUE if x is a recognized time zone, FALSE otherwise.

Examples

is_recognized_tzone("UTC")
is_recognized_tzone("America/New_York")
is_recognized_tzone("")
is_recognized_tzone("badzone")
is_recognized_tzone(10L)

8 n_spans

n_spans Count the number of spans in a phinterval

Description

n_spans() counts the number of disjoint time spans in each element of phint.

Usage

n_spans(phint)

Default S3 method:
n_spans(phint)

S3 method for class 'Interval'
n_spans(phint)

S3 method for class 'phinterval'
n_spans(phint)

Arguments
phint [phinterval / Intervall]
A <phinterval> or <Interval> vector.
Value

An integer vector the same length as phint.

Examples

Count spans
y2000 <- interval(as.Date("2000-01-01"), as.Date("2001-01-01"))
y2025 <- interval(as.Date("2025-01-01"), as.Date("2025-01-01"))

n_spans(c(

phint_union(y2000, y2025),
phint_intersect(y2000, y2025),
y2000, y2025

))

phinterval 9

phinterval Create a new phinterval

Description
phinterval() creates a new <phinterval> vector from start and end times. A phinterval (think
"potentially holey interval") is a span of time which may contain gaps.

Usage

phinterval(
start = POSIXct(),
end = POSIXct(),

tzone = NULL,
by = NULL,
order_by = FALSE
)
Arguments
start, end [POSIXct / POSIX1t / Datel
A pair of datetime vectors to represent the endpoints of the spans. start and
end are recycled to a common length using vctrs-style recycling rules.
tzone [character(1)]

A time zone to display the <phinterval> in. If tzone is NULL (the default),
then the time zone is taken from that of start.
tzone can be any non-NA string, but unrecognized time zones (see is_recognized_tzone())
will be formatted using "UTC" with a warning.

by [vector / data.frame / NULL]
An optional grouping vector or data frame. When provided, start[i] and
end[i] pairs are grouped by by[i], creating one phinterval element per unique
value of by. Overlapping or abutting spans within each group are merged. If
NULL (the default), each start/end pair creates a separate phinterval element.
by is recycled to match the common length of start and end.
by may be any vector in the vctrs sense. See vctrs::obj_is_vector() for
details.

order_by [TRUE / FALSE]

Should the output be ordered by the values in by? If FALSE (the default), the
output order matches the first appearance of each group in by. If TRUE, the
output is sorted by the unique values of by. Only used when by is not NULL.

Details

The <phinterval> class is designed as a generalization of the lubridate: :interval(). While an
<Interval> element represents a single contiguous span between two fixed times, a <phinterval>
element can represent a time span that may be empty, contiguous, or disjoint (i.e. containing gaps).

10 phinterval

Each element of a <phinterval> is stored as a (possibly empty) set of non-overlapping and non-
abutting time spans.

When by = NULL (the default), phinterval() creates scalar phinterval elements, where each ele-
ment contains a single time span from start[i] to end[i]. Thisis equivalentto lubridate: :interval():

interval(start, end, tzone = tzone) # <Interval> vector
phinterval(start, end, tzone = tzone) # <phinterval> vector

When by is provided, phinterval() groups the start/end pairs by the values in by, creating
phinterval elements that may contain multiple disjoint time spans. Overlapping or abutting spans
within each group are automatically merged.

Value

When by = NULL, a <phinterval> vector the same length as the recycled length of start and end.

When by is provided, a <phinterval> vector with one element per unique value of by.

Differences from interval()

While phinterval() is designed as a drop-in replacement for lubridate: :interval(), there are
three key differences regarding the start and end arguments:

* Stricter recycling: phinterval() uses vctrs recycling rules instead of base R recycling.
Length-1 vectors recycle to any length, but mismatched lengths (e.g., 2 vs 3) cause an error.

* No character inputs: phinterval() does not accept character vectors for start and end.
Character starts and ends (e.g. "2021-01-01") must be converted to datetimes first using
as.POSIXct(), lubridate: :ymd(), or a similar function.

 Standardized endpoints: lubridate: :interval() allows negative length spans where end[i]
<start[i]. phinterval() flips the order of the i-th span’s endpoints when end[i] < start[i]
to ensure that all spans are positive, similar to lubridate::int_standardize().

Examples

Scalar phintervals (equivalent to interval())
phinterval(
start = as.Date(c("2000-01-01", "2000-02-01")),
end = as.Date(c("2000-02-01", "2000-03-01"))
)

Grouped phintervals with multiple spans per element

phinterval(
start = as.Date(c("2000-01-01", "2000-03-01", "2000-02-01")),
end = as.Date(c("2000-02-01", "2000-04-01", "2000-03-01")),
by = c(1, 1, 2)

)

Overlapping spans are merged within groups
phinterval(
start = as.Date(c("2000-01-01", "2000-01-15")),

phinterval-accessors 11

end = as.Date(c("2000-02-01", "2000-02-15")),
by =1
)

Empty phinterval
phinterval()

Specify time zone

phinterval(
start = as.Date("2000-01-01"),
end = as.Date("2000-02-01"),
tzone = "America/New_York"

)

phinterval-accessors Accessors for the endpoints of a phinterval

Description

phint_start() and phint_end() return the earliest and latest endpoint of each phinterval element,
respectively. Holes (empty time spans) are returned as NA.

phint_starts() and phint_ends() return lists of all start and end points for each phinterval
element, respectively. For phintervals with multiple disjoint spans, each span’s endpoint is included.
Holes are returned as length-0 <POSIXct> vectors.

Usage
phint_start(phint)

Default S3 method:
phint_start(phint)

S3 method for class 'Interval'
phint_start(phint)

S3 method for class 'phinterval'
phint_start(phint)

phint_end(phint)

Default S3 method:
phint_end(phint)

S3 method for class 'Interval'
phint_end(phint)

S3 method for class 'phinterval'

12 phinterval-accessors

phint_end(phint)
phint_starts(phint)

Default S3 method:
phint_starts(phint)

S3 method for class 'Interval'
phint_starts(phint)

S3 method for class 'phinterval'
phint_starts(phint)

phint_ends(phint)

Default S3 method:
phint_ends(phint)

S3 method for class 'Interval'
phint_ends(phint)

S3 method for class 'phinterval'
phint_ends(phint)

Arguments
phint [phinterval / Intervall
A <phinterval> or <Interval> vector.
Value

For phint_start() and phint_end(), a <POSIXct> vector the same length as phint.
For phint_starts() and phint_ends(), a list of <POSIXct> vectors the same length as phint.

Examples

int1 <- interval(as.Date("2020-01-10"), as.Date("2020-02-01"))
int2 <- interval(as.Date("2023-05-02"), as.Date("2023-06-03"))

phint_start(int1)
phint_end(int1)

Holes have no endpoints; disjoint phintervals have multiple endpoints
hole <- phint_intersect(intl1, int2)

disjoint <- phint_union(int1, int2)

phint_start(c(hole, disjoint))
phint_starts(c(hole, disjoint))

phint_end(c(hole, disjoint))

phinterval-set-operations 13

phint_ends(c(hole, disjoint))

phint_start() and phint_end() return the minimum and maximum endpoints
negative <- interval(as.Date("1980-01-01"), as.Date("1979-12-27"))
phint_start(negative)

phint_end(negative)

phinterval-set-operations
Vectorized set operations

Description

These functions perform elementwise set operations on <phinterval> vectors, treating each ele-
ment as a set of non-overlapping intervals. They return a new <phinterval> vector representing
the result of the corresponding set operation. All functions follow vctrs-style recycling rules.

e phint_complement() returns all time spans not covered by phint.

e phint_union() returns the intervals that are within either phint1 or phint2.

e phint_intersect() returns the intervals that are within both phint1 and phint2.

e phint_setdiff() returns intervals in phint1 that are not within phint2.

Usage
phint_complement (phint)

phint_union(phint1, phint2)
phint_intersect(phint1, phint2, bounds = c("[]", "(O)"))

phint_setdiff(phint1, phint2)

Arguments

phint [phinterval / Intervall]
A <phinterval> or <Interval> vector.

phint1, phint2 [phinterval / Intervall
A pair of <phinterval> or <Interval> vectors. phint1 and phint2 are recy-
cled to a common length using vctrs-style recycling.

bounds L"c1” 7 "O"1
For phint_intersect() only, whether span endpoints are inclusive or exclu-
sive:

e "[]" (default): Closed intervals - both endpoints are included

* "()": Open intervals - both endpoints are excluded
This affects adjacency and overlap detection. For example, with bounds = "[]",
the intervals [1, 5] and [5, 10] are considered adjacent (they share the end-
point 5), while with bounds =" ()", (1, 5) and (5, 10) are disjoint (neither
includes 5).

14 phinterval_options

Value

A <phinterval> vector.

Examples

monday <- interval(as.Date("”2025-11-10"), as.Date("2025-11-11"))
tuesday <- interval(as.Date("2025-11-11"), as.Date("2025-11-12"))
friday <- interval(as.Date("2025-11-14"), as.Date("2025-11-15"))
jan_1_to_5 <- interval(as.Date("2000-01-01"), as.Date("2000-01-05"))
jan_3_to_9 <- interval(as.Date("2000-01-03"), as.Date("2000-01-09"))

Complement
phint_complement(jan_1_to_5)

The complement of a hole is an infinite span covering all time
hole <- hole()
phint_complement(hole)

Union
phint_union(c(monday, monday, monday), c(tuesday, friday, NA))

Elements of length 1 are recycled
phint_union(monday, c(tuesday, friday, NA))

Intersection
phint_intersect(jan_1_to_5, jan_3_to_9)

The intersection of non-overlapping intervals is a hole
phint_intersect(monday, friday)

By default, the intersection of adjacent intervals is instantaneous
phint_intersect(monday, tuesday)

Use bounds to set the intersection of adjacent intervals to a hole
phint_intersect(monday, tuesday, bounds = "()")

Set difference
phint_setdiff(jan_1_to_5, jan_3_to_9)
phint_setdiff(jan_3_to_9, jan_1_to_5)

Instantaneous intervals do not affect the set difference
noon_monday <- as.POSIXct("2025-11-10 12:00:00")
phint_setdiff(monday, interval(noon_monday, noon_monday)) == monday

phinterval_options Package options

phint_invert 15

Description

The phinterval package uses the following global options to control printing and default behav-
iors. These options can be set using options() and queried using getOption().

Options

e phinterval.print_max_width: Character width at which a printed or formatted <phinterval>
element is truncated for display, default: 90.

Examples

monday <- phinterval(as.Date("2025-11-10"), as.Date("2025-11-11"))
friday <- phinterval(as.Date("2025-11-14"), as.Date("2025-11-15"))

Get the default setting
getOption("phinterval.print_max_width")
phint_squash(c(monday, friday))

Change the setting for the session duration
opts <- options(phinterval.print_max_width = 25)
phint_squash(c(monday, friday))

Reset to the previous settings
options(opts)

phint_invert Get the gaps in a phinterval as time spans

Description

phint_invert() returns the gaps within a phinterval as a <phinterval> vector. For phintervals
with multiple disjoint spans, the gaps between those spans are returned. Contiguous time spans
(e.g., lubridate: :interval() vectors) have no gaps and are inverted to holes.

phint_invert() is similar to phint_complement (), except that time occurring outside the extent
of phint (before its earliest start or after its latest end) is not included in the result.

Usage

phint_invert(phint, hole_to = c("hole"”, "inf", "na"))

Arguments
phint [phinterval / Intervall
A <phinterval> or <Interval> vector.
hole_to ["hole" / "inf" / "na"]
How to handle holes (empty phinterval elements):

16 phint_length

e "hole"” (default): Holes remain as holes
e "inf": Return a span from -Inf to Inf (all time)
* "na": Return an NA phinterval

Value

A <phinterval> vector the same length as phint.

Examples

monday <- interval(as.Date("”2025-11-10"), as.Date("2025-11-11"))
friday <- interval(as.Date("2025-11-14"), as.Date("2025-11-15"))
sunday <- interval(as.Date("2025-11-16"), as.Date("2025-11-17"))

Contiguous intervals have no gaps (inverted to holes)
phint_invert(monday)

Disjoint intervals: gaps between spans are returned
phint_invert(phint_squash(c(monday, friday, sunday)))

The gap between Monday and Friday is Tuesday through Thursday
tues_to_thurs <- interval(as.Date("”2025-11-11"), as.Date("2025-11-14"))
phint_invert(phint_union(monday, friday)) == tues_to_thurs

Invert vs complement: time before and after is excluded from invert
mon_and_fri <- phint_union(monday, friday)

phint_invert(mon_and_fri)

phint_complement(mon_and_fri)

How to invert holes

hole <- phint_intersect(monday, friday)
phint_invert(hole, hole_to = "hole")
phint_invert(hole, hole_to = "inf")
phint_invert(hole, hole_to = "na")

phint_length Compute the length of a phinterval in seconds

Description

phint_length() calculates the total length of all time spans within each phinterval element in sec-
onds. For phintervals with multiple disjoint spans, the lengths are summed. Instantaneous intervals
and holes have length 0.

phint_lengths() returns the individual length in seconds of each time span within each phinterval
element.

phint_length
Usage
phint_length(phint)

Default S3 method:
phint_length(phint)

S3 method for class 'Interval'
phint_length(phint)

S3 method for class 'phinterval'
phint_length(phint)

phint_lengths(phint)

Default S3 method:
phint_lengths(phint)

S3 method for class 'Interval'
phint_lengths(phint)

S3 method for class 'phinterval'
phint_lengths(phint)

Arguments
phint [phinterval / Intervall
A <phinterval> or <Interval> vector.
Value

For phint_length(), a numeric vector the same length as phint.

For phint_lengths(), a list of numeric vectors the same length as phint.

Examples

monday <- interval(as.Date("”2025-11-10"), as.Date("2025-11-11"))
friday <- interval(as.Date("2025-11-14"), as.Date("2025-11-15"))

phint_length(monday)
phint_length(phint_intersect(monday, friday))

phint_length() sums the lengths of disjoint time spans
mon_and_fri <- phint_union(monday, friday)
phint_length(mon_and_fri) == phint_length(monday) + phint_length(friday)

phint_lengths() returns the length of each disjoint time span
phint_lengths(mon_and_fri)

18 phint_overlaps

phint_overlaps Test whether two phintervals overlap

Description

phint_overlaps() tests whether the i-th element of phint1 overlaps with the i-th element of
phint2, returning a logical vector. Adjacent intervals (where one ends exactly when the other
begins) are considered overlapping. phint1 and phint2 are recycled to their common length using
vetrs-style recycling rules.

Usage
phint_overlaps(phint1, phint2, bounds = c("[1", "()"))

Arguments

phint1, phint2 [phinterval / Intervall
A pair of <phinterval> or <Interval> vectors. phint1 and phint2 are recy-
cled to a common length using vctrs-style recycling.

bounds r"ea” 7 "O"
Whether span endpoints are inclusive or exclusive:
e "[]" (default): Closed intervals - both endpoints are included
e "()": Open intervals - both endpoints are excluded

This affects adjacency and overlap detection. For example, with bounds = "[]",
the intervals [1, 5] and [5, 10] are considered adjacent (they share the end-
point 5), while with bounds =" ()", (1, 5) and (5, 10) are disjoint (neither
includes 5).

Value

A logical vector.

Examples

monday <- interval(as.Date("”2025-11-10"), as.Date("2025-11-11"))
tuesday <- interval(as.Date("2025-11-11"), as.Date("2025-11-12"))
friday <- interval(as.Date("2025-11-14"), as.Date("2025-11-15"))
mon_and_fri <- phint_union(monday, friday)

phint_overlaps(c(monday, monday, friday), c(mon_and_fri, friday, NA))

Adjacent intervals are considered overlapping by default
phint_overlaps(monday, tuesday)

Use exclusive bounds to consider adjacent intervals as disjoint
phint_overlaps(monday, tuesday, bounds = "()")

phint_sift 19

Holes never overlap with anything (including other holes)
hole <- hole()
phint_overlaps(c(hole, monday), c(hole, hole))

phint_sift Remove instantaneous time spans from a phinterval

Description

phint_sift() removes instantaneous spans (spans with O duration) from phinterval elements. If
all spans in an element are instantaneous, the result is a hole.

Usage

phint_sift(phint)

Arguments
phint [phinterval / Intervall
A <phinterval> or <Interval> vector.
Value

A <phinterval> vector the same length as phint.

Examples

y2020 <- interval(as.Date("2020-01-01"), as.Date("2021-01-01"))
y2021 <- interval(as.Date("2021-01-01"), as.Date("2022-01-01"))
y2022 <- interval(as.Date("2022-01-01"), as.Date("2023-01-01"))

The intersection of two adjacent intervals is instantaneous
new_years_2021 <- phint_intersect(y2020, y2021)
new_years_2021

phint_sift(new_years_2021)

phint_sift() removes instants while keeping non-instantaneous spans
y2022_and_new_years <- phint_union(y2022, new_years_2021)
y2022_and_new_years

phint_sift(y2022_and_new_years)

20 phint_unnest

phint_unnest Unnest a phinterval into a data frame

Description

phint_unnest() converts a <phinterval> vectorinto a tibble: :tibble() where each time span
becomes a row.

Usage
phint_unnest(phint, hole_to = c("drop”, "na"), keep_size = FALSE, key = NULL)

Arguments
phint [phinterval / Intervall]
A <phinterval> or <Interval> vector to unnest.
hole_to ["drop” / "na"]

How to handle hole elements (phintervals with zero spans). If "drop” (the de-
fault), holes are excluded from the output. If "na”, a row with NA start and end
times is included for each hole.

keep_size [TRUE / FALSE]
Should a size column be included in the output? If TRUE, the output includes a
size column containing the number of spans in the original phinterval element.
If FALSE (the default), only key, start, and end columns are returned.

key [vector / data.frame / NULL]J
An optional vector or data frame to use as the key column in the output. If
provided, must be the same length as phint. If NULL (the default), the key
column contains row indices (position in phint).
key may be any vector in the vctrs sense. See vctrs::obj_is_vector() for
details.

Details

phint_unnest() expands each phinterval element into its constituent time spans, creating one row
per span. The resulting data frame contains a key column identifying which phinterval element
each span came from, along with start and end columns for the span boundaries.

For phinterval elements containing multiple disjoint spans, all spans are included with the same key
value. Scalar phinterval elements (single spans) produce a single row.

Value
A tibble::tibble() with columns:
* key:

— If key = NULL: A numeric vector identifying the index of the phinterval element
— Otherwise: The element of key corresponding to the phinterval element

phint_within 21

* start: POSIXct start time of the span
* end: POSIXct end time of the span

» size: (if keep_size = TRUE) Integer count of spans in the phinterval element

Examples

Unnest scalar phintervals

phint <- phinterval(
start = as.Date(c("2000-01-01", "2000-02-01")),
end = as.Date(c("2000-01-15", "2000-02-15"))

)

phint_unnest(phint)

Unnest multi-span phinterval

phint <- phinterval(
start = as.Date(c("2000-01-01", "2000-03-01")),
end = as.Date(c("2000-01-15", "2000-03-15")),
by =1

)

phint_unnest(phint)

Handle holes

phint <- c(
phinterval(as.Date("2000-01-01"), as.Date("2000-01-15")),
hole(),
phinterval (as.Date("2000-02-01"), as.Date("2000-02-15"))
)

phint_unnest(phint, hole_to = "drop")
phint_unnest(phint, hole_to = "na")

Include size column
phint_unnest(phint, keep_size = TRUE, hole_to = "na")

Use a custom “key~
phint_unnest(phint, key = c("A", "B", "C"), hole_to = "na")

phint_within Test whether a datetime or phinterval is within another phinterval

Description

phint_within() tests whether the i-th element of x is contained within the i-th element of phint,
returning a logical vector. x may be a datetime (Date, POSIXct, POSIXIt), lubridate: :interval(),
or phinterval(), while phint must be a lubridate::interval() or phinterval(). x and
phint are recycled to their common length using vctrs-style recycling rules.

Datetimes on an endpoint of an interval are considered to be within the interval. An interval is
considered to be within itself.

22 phint_within
Usage
phint_within(x, phint, bounds = c("[]", "O)"))
Arguments
X [phinterval / Interval / Date / POSIXct / POSIX1t]
The object to test.
phint [phinterval / Intervall]
A <phinterval> or <Interval> vector.
bounds "1" 7 "O"1
Whether span endpoints are inclusive or exclusive:
e "[]" (default): Closed intervals - both endpoints are included
e "()": Open intervals - both endpoints are excluded
This affects adjacency and overlap detection. For example, with bounds = "[]",
the intervals [1, 5] and [5, 10] are considered adjacent (they share the end-
point 5), while with bounds =" ()", (1, 5) and (5, 10) are disjoint (neither
includes 5).
Value
A logical vector.
Examples

jan_1_to_5 <- interval(as.Date("2000-01-01"), as.Date("2000-01-05"))
jan_2_to_4 <- interval(as.Date("2000-01-02"), as.Date("2000-01-04"))
jan_3_to_9 <- interval(as.Date("2000-01-03"), as.Date("2000-01-09"))

phint_within(
c(jan_2_to_4, jan_3_to_9, jan_1_to_5),
c(jan_1_to_5, jan_1_to_5, NA)

)

phint_within(as.Date(c("2000-01-06", "2000-01-20")), jan_3_to_9)

Intervals are within themselves
phint_within(jan_1_to_5, jan_1_to_5)

By default, interval endpoints are considered within
phint_within(as.Date("2000-01-01"), jan_1_to_5)

Use bounds to consider intervals as exclusive of endpoints
phint_within(as.Date("2000-01-01"), jan_1_to_5, bounds = "()")

Holes are never within any interval (including other holes)
hole <- hole()
phint_within(c(hole, hole), c(hole, jan_1_to_5))

squash 23

squash Squash overlapping intervals into non-overlapping spans

Description

phint_squash() and datetime_squash() merge overlapping or adjacent intervals into a minimal
set of non-overlapping, non-adjacent time spans.

e phint_squash() takes a <phinterval> or <Interval> vector

* datetime_squash() takes separate start and end datetime vectors
When by = NULL (the default), all intervals are merged into a single phinterval element. When by is

provided, intervals are grouped and merged separately within each group, creating one phinterval
element per unique value of by.

Usage

phint_squash(
phint,
by = NULL,
na.rm = TRUE,
empty_to = c("hole”, "na", "empty"),
order_by = FALSE,
keep_by = FALSE

)

datetime_squash(
start,
end,
by = NULL,
na.rm = TRUE,
empty_to = c("hole”, "na", "empty"),
order_by = FALSE,
keep_by = FALSE

)

Arguments
phint [phinterval / Intervall
A <phinterval> or <Interval> vector.
by [vector / data.frame / NULL]J

An optional grouping vector or data frame. When provided, intervals are grouped
by by and merged separately within each group. If NULL (the default), all inter-
vals are merged into a single phinterval element.

For datetime_squash(), by must be recyclable with the recycled length of
start and end.

by may be any vector in the vctrs sense. See vctrs::obj_is_vector() for
details.

24 squash

na.rm [TRUE / FALSE]
Should NA elements be removed before squashing? If FALSE and any NA elements
are present, the result for that group is NA. Defaults to TRUE.
empty_to ["hole” / "na" / "empty"]
How to handle empty inputs (length-0 vectors or groups with only NA values
when na.rm = TRUE):
¢ "hole" (default): Return a hole
* "na": Return an NA phinterval
e "empty”: Return a length-0 phinterval vector
order_by [TRUE / FALSE]
Should the output be ordered by the values in by? If FALSE (the default), the
output order matches the first appearance of each group in by. If TRUE, the
output is sorted by the unique values of by. Only used when by is not NULL.
keep_by [TRUE / FALSE]
Should the by values be returned alongside the result? If FALSE (the default),
returns a <phinterval> vector. If TRUE, returns a tibble::tibble() with
columns by and phint. Requires by to be non-NULL.

start [POSIXct / POSIX1t / Datel]
A vector of start times. Must be recyclable with end. Only used in datetime_squash().
end [POSIXct / POSIX1t / Date]

A vector of end times. Must be recyclable with start. Only used in datetime_squash().

Details

These functions are particularly useful in aggregation workflows with dplyr::summarize() to
combine intervals within groups.

Value
When keep_by = FALSE:

e If by = NULL: A length-1 <phinterval> vector (or length-0 if the input is empty and empty_to
= Hempty”)

 If by is provided: A <phinterval> vector with one element per unique value of by

When keep_by = TRUE: A tibble: :tibble() with columns by and phint.

Examples

jan_1_to_5 <- interval(as.Date("2000-01-01"), as.Date("2000-01-05"))
jan_3_to_9 <- interval(as.Date("2000-01-03"), as.Date("2000-01-09"))
jan_11_to_12 <- interval(as.Date("2000-01-11"), as.Date("2000-01-12"))

phint_squash: merge intervals from a phinterval/Interval vector
phint_squash(c(jan_1_to_5, jan_3_to_9, jan_11_to_12))

datetime_squash: merge intervals from start/end vectors
datetime_squash(

squash

start = as.Date(c("2000-01-01", "2000-01-03", "2000-01-11")),
end = as.Date(c("2000-01-05", "2000-01-09", "2000-01-12"))
)

NA values are removed by default
phint_squash(c(jan_1_to_5, jan_3_to_9, jan_11_to_12, NA))

Set na.rm = FALSE to propagate NA values
phint_squash(c(jan_1_to_5, jan_3_to_9, jan_11_to_12, NA), na.rm = FALSE)

Squash within groups

phint_squash(
c(jan_1_to_5, jan_3_to_9, jan_11_to_12),
by = c(1, 1, 2)

)

Return a data frame with by values
phint_squash(
c(jan_1_to_5, jan_3_to_9, jan_11_to_12),
by = c("A", "A", "B"),
keep_by = TRUE
)

Control output order with order_by
phint_squash(
c(jan_1_to_5, jan_3_to_9, jan_11_to_12),
by = c(2, 2, 1),
order_by = TRUE
)

empty_to determines the result of empty inputs
empty <- phinterval()

phint_squash(empty, empty_to = "hole")
phint_squash(empty, empty_to = "na")
phint_squash(empty, empty_to = "empty")

Index

+ datasets
phinterval_options, 14

as.POSIXct(), 10
as_duration, 2
as_phinterval, 3

datetime_squash (squash), 23
dplyr::summarize(), 24

getOption(), 15
hole, 4

is_hole, 5
is_phinterval, 6
is_phintish, 6
is_recognized_tzone, 7
is_recognized_tzone(), 9

lubridate::as.duration(), 2
lubridate: :duration(), 2

lubridate: :int_standardize(), 3, 10
lubridate: :interval(), 2, 3,9, 10, 15, 21
lubridate: :ymd(), 10

n_spans, 8
options(), 15

phint_complement
(phinterval-set-operations), 13

phint_end (phinterval-accessors), 11

phint_ends (phinterval-accessors), 11

phint_intersect
(phinterval-set-operations), 13

phint_invert, 15

phint_length, 16

phint_lengths (phint_length), 16

phint_overlaps, 18

phint_setdiff
(phinterval-set-operations), 13

phint_sift, 19

phint_squash (squash), 23

phint_start (phinterval-accessors), 11

phint_starts (phinterval-accessors), 11

phint_union
(phinterval-set-operations), 13

phint_unnest, 20

phint_within, 21

phinterval, 9

phinterval(), 2,4, 21

phinterval-accessors, 11

phinterval-set-operations, 13

phinterval_options, 14

squash, 23

tibble::tibble(), 20, 24
tzdb::tzdb_names(), 7

vctrs::obj_is_vector(), 9, 20, 23

	as_duration
	as_phinterval
	hole
	is_hole
	is_phinterval
	is_phintish
	is_recognized_tzone
	n_spans
	phinterval
	phinterval-accessors
	phinterval-set-operations
	phinterval_options
	phint_invert
	phint_length
	phint_overlaps
	phint_sift
	phint_unnest
	phint_within
	squash
	Index

