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Introduction

The repfdr package implements the eBayes replicability methodology presented in “Replicability analysis
for genome-wide association studies” (Heller and Yekutieli, 2014). This vignette describes the methodology
and its outputs, the structure of the package and workflow (data preprocessing, model fitting and output
structure for statistical inference), and provides working examples. The Vignette also describes how the
methodology may be extended for replicability analysis for a large number of studies. An appendix presents
the theoretical aspects for the use of repfdr in this extended setting.

repfdr may be applied in any analysis of the same M set of hypotheses across N studies. For concreteness,
in this vignette following Heller and Yekutieli (2014) we consider the example that the multiple studies
are N GWAS studying association between the same set of M SNPs to the same phenotype in N different
populations. The null hypothesis in each GWAS for each SNP is that the SNP is unassociated to the
phenotype in this particular study population. The alternative hypothesis is that the SNP is associated to
the phenotype. Heller and Yekutieli (2014) also consider the case where there are two directional alternative
hypotheses in each GWAS for each SNP that the SNP is either positively or negatively associated to the
phenotype.

Benjamini and Heller (2008) introduced replicability as an extension of multiple testing of the meta-analysis
hypotheses. The hypotheses in replicability analysis are with regard to the association status for a single
SNP across the N study populations. An example of a replicability null hypothesis is SNP is unassociated
with the phenotype in at least N − 1 study populations. For u = 0 · · ·N , Benjamini and Heller (2008) define
the u partial conjunction null hypothesis “SNP is associated with the phenotype in at most u populations”.
For multiple testing of u replicability, Benjamini Heller (2008) suggest computing a p-value for testing the
u partial conjunction null hypothesis for each SNP and applying the Benjamini-Hochberg FDR controlling
testing procedure to test the M null hypotheses. Heller and Yekutieli (2014) introduced an eBayes FDR
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controlling methodology for replicability analysis that is shown to be considerably more powerful than the
frequentist approach of Benjamini and Heller (2008), in large settings such as GWAS where the eBayes
parameters can be well estimated.

Notations and setup

The GWAS are indexed by i = 1, ..., N and the SNP are indexed by j = 1, ..., M . Hi,j is an indicator
variable corresponding to the hypothesis regarding the association of SNP j with the phenotype in GWAS
i. Hi,j may take values in either {0, 1} or {−1, 0, 1}. For the first option Hi,j = 0 if SNP j is unassociated
with the phenotype in Study i and Hi,j = 1 if SNP j is associated with the phenotype in Study i. The
second option allows to further discriminate between the case that SNP j is positively associated with the
phenotype (Hi,j = 1) and the case that SNP j is negatively associated with the phenotype (Hi,j = −1). The
association status of SNP j across the N GWAS is specified by the n-vector Hj = (H1,j · · ·Hn,j). The u
partial conjunction null hypothesis is defined H0

u = {h :
∑

i I(hi = 0) ≤ u}. Let π(h) denote the proportion
of SNP with association status h:

π(h) := #{j : Hj = h}/M.

For i = 1 · · ·N , summing π(h) over the other N−1 studies, yields πhi,i the proportion of SNPs with Hi,j = hi.

The input for repfdr is a matrix Zi,j , where Zi,j is the Z-score testing the null hypothesis that SNP j is
unassociated with the phenotype in GWAS i. We assume that conditionally on Hi,j ,Zi,j are independently
distributed and that in each study the z-score distribution is the same for all SNPs with the same association
status. We further assume that the distribution of Zi,j |Hi,j = 0 is N(0, 1). We denote the distribution of
Zi,j |Hi,j = 1 by f1,i and denote the distribution of Zi,j |Hi,j = −1 by f−1,i. Thus the marginal distribution
of the z-scores in Study i is assumed to be drawn from the mixture distribution:

Zi,j ∼ π0,i ·N(0, 1) + π1,i · fi,1 + π−1,i · fi,−1

In the Heller and Yekutieli (2014) Bayesian framework for replicability the parameter is Hj . The prior
distribution for Hj is π(h) = Pr(Hj = h). For Zj = (Z1,j · · ·ZI,j), the likelihood is

f(zj |h) = ΠI
i=1fhi,i(zi,j).

The posterior probability is given by

π(h|zj) = Pr(Hj = h|Zj = zj) =
f(zj |h)π(h)

∑

h f(zj |h)π(h)
.

The local Bayes FDR for the u partial conjunction null hypothesis is defined

fdrH0
u
(zj) := Pr(Hj ∈ H0

u|Zj = zj) =
∑

h∈H0
u

π(h|zj).

The Bayes FDR corresponding to a rejection region Z a subset of RI , such that observing Zj ∈ Z implies
rejection of the null hypothesis Hi,j ∈ H0

u, is defined

FdrH0
u
(Z) := Pr(Hj ∈ H0

u|Zj ∈ Z).

Where the relation between the local Bayes FDR and the FDR is

FdrH0
u
(Z) = EZj∈Z fdrH0

u(zj).

Heller and Yekutieli (2014) further show that the rejection region that yields maximal power of all rejection
regions with the a nominal Bayes FDR level q is given by

ZBayes,H0
u

= {zj : fdrH0
u
(zj) ≤ t(q)}.
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Implementation of the Bayesian approach for replicability

repfdr uses the empirical distribution of the z-scores in each study to estimate fi,1 and fi,−1 in the N studies.
Once the marginal z-score distributions are specified it is possible to express the complete likelihood for the
entire z-score matrix as a function of the set of SNP association status proportions {π(h) : ∀h}. repfdr uses
an EM algorithm to find the set of SNP association status proportions maximizing the complete likelihood.

Once the likelihood and prior are assessed, repfdr computes the local Bayes FDR for each SNP. The SNP are
then sorted by their local FDR values, where Zj is the indices of the SNP with local FDR values smaller
than that of Zj . The estimated replicability FDR for SNP j reported in repfdr is given by cumulative mean
of the local FDR values

FdrH0
u
(Zj) :=

∑

k∈Zj
fdrH0

u
(zk)

|Zj |

Package structure

repfdr package workflow is as follows:

1. Preprocess Z scores or 2-sided P-Values for all studies analyzed. In this step, we bin the Z scores (|Z|
for the 2-sided P-Value setting) into a user-defined number of bins, and estimate the probability of
falling in the bin for the 2 or 3 possible different association statuses (as suggested in Efron, 2010). It
also estimates the fraction of null hypotheses in each study either by central matching (Efron, 2010), or
by the plug-in estimate on p-values (Schweder and Spjotvoll,1982) .

Users are given diagnostic plots at this stage for examining the goodness of fit:

• π̂0,i - Estimator of fraction of null hypotheses in the ith study.

• f̂1,i and f̂−1,i - Estimators non null densities of Z scores under positive and negative association,
respectivly.

This step is performed with the function ztobins or twosided.PValues.tobins. If the diagnostic plots
show poor fit, repfdr should not be called with the output from ztobins or twosided.PValues.tobins.
This step is represented in the flow chart below, along with the parameters for the preprocessing functions.

Note that these functions can be bypassed when using the main repfdr function, by providing as input to
repfdr the user’s own estimates of the probability of falling in each bin with each association status.
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2. Perform replicability analysis using the function repfdr. Input includes the estimated probability of
each association status in each bin, as well as a matrix of bin membership for each SNP in each study
(see the help page of ztobins and twosided.PValues.tobins for details on the outputs pdf.binned.z

and binned.z.mat)

The function computes the π̂h matrix, along with the fdr and Fdr.

The function allows several methods of analysis:

• Replicability - tests for the claim that a signal is present in at least two studies for a SNP (Hi,j = 1or−1,
for at least two studies, with the same directionality).

• Meta-Analysis - tests for the claim that a signal is present in at least one study (Hi,j = 1or − 1, for at
least one i)

• user-defined - e.g., u-Replicability, which tests for the claim that a signal is present in at least u + 1
studies.

See the help page for the function repfdr, for details on how to select the type of inference required, along
with other parameters for the algorithm.

3. Computing ldr - the local discovery rate. This is a posterior probability for a specific SNP to have a
specific configuration h. This posterior probability may be computed using the repfdr function in step
2 (see function help page for additional details) or using a specific call to the functon ldr.

Example using Z scores matrix as input

The following is an example for running a complete procedure via repfdr. We first simulate out data, two
studies with 5e4 SNPs each. the first 4000 SNPs are non null, with signal sampled from N(0, 32). Normal
noise is added for the measured Z score in each non-null SNP.

We used ztobins with the default settings take into account directionality of the signal. The non-null
probabilities f̂i,−1 and f̂i,1 are displayed in red and orange curves, respectively, in the diagnostic plot
histograms. A second plot for each study is a Q-Q plot of the observed quantiles versus the standard normal
quantiles (the black curve). The red line is the quantiles of a normal with estimated moments versus the
standard normal quantiles. The dashed black line is y = x. A single black dot marks the (0, 0) point on the
Q-Q plot. A lack of fit between the red line (or data) to the black dashed line indicates data under the null
(no signal) may not be standard normal.

If the null distribution is not standard normal, data has to be transformed in a way which make the test
statistics standard normal under the null prior to input into ztobins. The section for model misspecification
shows an example of model misfit, that could be identified by the user with these diagnostic plots.

# perform discretization, visualize results

res = ztobins(zmat = my_zmat, plot.diagnostics = T,df = 20,n.bins = 50,trim.z = F)
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We perform replicability analysis via the repfdr function.

We take a look at the results:

#probability for each null/non null combination

repfdr.res$Pi
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## Study 1 Study 2 Pi

## [1,] 0 0 9.488157e-01

## [2,] -1 0 1.705307e-04

## [3,] 1 0 2.804414e-05

## [4,] 0 -1 1.341876e-04

## [5,] -1 -1 2.572073e-02

## [6,] 1 -1 4.697190e-08

## [7,] 0 1 1.769125e-04

## [8,] -1 1 1.619912e-06

## [9,] 1 1 2.495226e-02

#fdr and Fdr for each SNP

head(repfdr.res$mat)

## fdr Fdr

## 0.6197133 0.1200072

## 0.9604343 0.5109231

## 1.0000000 0.8562042

## 0.9686564 0.5405296

## 1.0000000 0.8562124

## 0.6606077 0.1390654

# computing local FDR

ldr.res = ldr(res$pdf.binned.z, res$binned.z.mat,repfdr.res$Pi)

#results for local ldr matrix

dim(ldr.res)

## [1] 9 50002

# ldr for first three SNPs: each row is a different configuration, SNPs 1,2, and 3 in columns 3,4 and 5,

ldr.res[,(1:(3+2))]

## Study 1 Study 2

## [1,] 0 0 0.6191407708 0.9602236642 0.9997579721

## [2,] -1 0 0.0000000000 0.0000000000 0.0002420279

## [3,] 1 0 0.0001056808 0.0000493817 0.0000000000

## [4,] 0 -1 0.0000000000 0.0000000000 0.0000000000

## [5,] -1 -1 0.0000000000 0.0000000000 0.0000000000

## [6,] 1 -1 0.0000000000 0.0000000000 0.0000000000

## [7,] 0 1 0.0004668887 0.0001612258 0.0000000000

## [8,] -1 1 0.0000000000 0.0000000000 0.0000000000

## [9,] 1 1 0.3802866597 0.0395657284 0.0000000000

#how many SNPs are to be reported at q=0.05

length(which(repfdr.res$mat[,2] <= 0.05))

## [1] 1977

Example using two sided P-Values as input

We now show how two sided P-Values can be used for input into repfdr via the twosided.PValues.tobins

function. This function should be used only for non-directional inference (e.g., identifying that at least two
studies contain signal, regardless of the association direction).
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####

#DATA GENERATION

####

# we generate a dataset with p=10000 pvalues for two studies,

# p1=300 of which are non null:

set.seed(1)

p = 10000

p1 = 1000

z1 = (rnorm(p))

z2 = (rnorm(p))

temp = rnorm(p1, 0,2)

z1[1:p1] = temp + rnorm(p1,0,0.2)

z2[1:p1] = temp + rnorm(p1,0,0.2)

zmat.example = cbind(z1,z2)

#convert to 2-sided P-Values

pmat.example = 1-(pnorm(abs(zmat.example)) - pnorm(-1*abs(zmat.example)))

####

#Discretization for two sided P-values.

####

twosided.pval.res = twosided.PValues.tobins(pmat.example,

plot.diagnostics = T,trim.z = T)

## Warning in backend.ztobins(zmat, n.association.status = 2, n.bins, type, :

## Nr. bins must be between 5 and sqrt(nr.SNPS), use force.bin.number = T to

## disable this condition.

## Warning in backend.ztobins(zmat, n.association.status = 2, n.bins, type, :

## overriding n.bins to 100
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repfdr.res = repfdr(twosided.pval.res$pdf.binned.z, twosided.pval.res$binned.z.mat,

non.null = 'replication',

control = em.control(tol = 1e-4,verbose = F))

length(which(repfdr.res$mat[,2] <= 0.05))
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## [1] 254

Diagnostic Plots - how to identify model misfit in ztobins and

twosided.PValues.tobins

We show two examples users should learn to avoid: Spline misfit (ztobins unable to estiamte density of data)
and non-normal null ditribution in data.

Failure in Density Estimation

We generate a sample with a complex and non sparse non null signal. We show how ztobins warns the
user regarding failure in density estimation. A typical solution is to use more degrees of freedom in spline
estimation.

set.seed(1)

p = 10000

p1 = 1000

z1 = (rnorm(p))

z2 = (rnorm(p))

temp = 1*rchisq(p1, 2,2)

z1[1:p1] = temp + rnorm(p1,0,0.2)

z2[1:p1] = temp + rnorm(p1,0,0.2)

res = ztobins(zmat = cbind(z1,z2), plot.diagnostics = T,n.bins = 50)

## Warning in backend.ztobins(zmat, n.association.status, n.bins, type, df, :

## In column 1 z1 ,f(z) misfit = 6 . Rerun with increased df

## Warning in backend.ztobins(zmat, n.association.status, n.bins, type, df, :

## In column 2 z2 ,f(z) misfit = 8.2 . Rerun with increased df
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Warning messages are also found in the reported object

res$PlotWarnings

## [1] "In column 1 z1 ,f(z) misfit = 6 . Rerun with increased df"

## [2] "In column 2 z2 ,f(z) misfit = 8.2 . Rerun with increased df"
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The problem can be solved by using a higher number of degrees of freedom for spline estimation:

res = ztobins(zmat = cbind(z1,z2), plot.diagnostics = F,df = 15, n.bins = 50)

Non Normal Null: Identification through Q-Q- plots

We generate data where the null distribution is not standard normal, and show that this can be detected via
the Q-Q plot.

set.seed(1)

p = 10000

p1 = 50

z1 = (rnorm(p))

z2 = (rnorm(p))

z1 = z1 * (0.5+0.2*(abs(z1))^2); z1 = z1/ sd(z1)

z2 = z2 * (0.5+0.2*(abs(z2))^2); z2 = z2/ sd(z2)

temp = rnorm(p1, 0,2.5)

z1[1:p1] = temp + rnorm(p1,0,0.2)

z2[1:p1] = temp + rnorm(p1,0,0.2)

res = ztobins(zmat = cbind(z1,z2), plot.diagnostics = T,n.bins = 50)

## Warning in backend.ztobins(zmat, n.association.status, n.bins, type, df, :

## In column 1 z1 ,f(z) misfit = 71.1 . Rerun with increased df

## Warning in backend.ztobins(zmat, n.association.status, n.bins, type, df, :

## In column 1 z1 the estimated fraction of nulls is 1.

## Warning: glm.fit: fitted rates numerically 0 occurred

## Warning in backend.ztobins(zmat, n.association.status, n.bins, type, df, :

## In column 2 z2 ,f(z) misfit = 58.7 . Rerun with increased df

## Warning in backend.ztobins(zmat, n.association.status, n.bins, type, df, :

## In column 2 z2 the estimated fraction of nulls is 1.
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Example for using clusters

For N independent studies, the computation can be made efficient if they are known to be clustered into C
independent clusters, i.e., where the probability of association configuration in one cluster is independent of
the probability of an association configuration in another cluster. For example, in GWAS, if one can group
the independent studies to groups such that pleiotropy occurs only within clusters, not across clusters.

The workflow of the package for analysis of clustered studies is similar to the single cluster (i.e. no clusters)
case. The workflow is depicted in the diagram below. Initially, the density of test statistics in each study
is estimated via ztobins. Next, repfdr is called, with the argument clusters. clusters is a vector,
partitioning the studies into independent clusters (4 clusters, of size 2, in the example below). repfdr is
called for each cluster separately. The results for all clusters are aggregated via the algorithm described in
the appendix (repfdr on clusters algorithm).

The following example shows how repfdr can be used for performing analysis on clusters. We show an example
with 8 clusters, 2 studies in each cluster. 1000 SNPs are chosen to be non null in each cluster, independently
of other clusters.

We generate the data:

#function generates data with 10^5 SNPS, 1000 are non null in each cluster.

demo_data = function(seed=1,p=100000,p1=1000){

set.seed(seed)

Signal = rep(F,p)

tau = 2

m_studies = 16

X = matrix(rnorm(p*m_studies),nrow = p)

for(i in 1:8){

current_signal = sample(1:p,p1,F)

Signal[current_signal] = T

temp1 = rnorm(p1,0,tau)

X[current_signal , 2*i-1] = temp1 + rnorm(p1,0,0.5)

X[current_signal , 2*i ] = temp1 + rnorm(p1,0,0.5)

}

pX = 2*pnorm(abs(X),lower.tail = F)

ret = list()
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ret$X = X

ret$pX = pX

ret$Signal = Signal

return(ret)

}

dat = demo_data()

pX = dat$pX

X = dat$X

Signal = dat$Signal

We call ztobins:

ztb = ztobins(X,df = 20)

pdf.binned.z = ztb$pdf.binned.z

binned.z.mat = ztb$binned.z.mat

We now run repfdr on clusters, where we input the cluster membership.

# we have 8 clusters, two observations in each cluster

clusters = as.integer(c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8))

res = repfdr(pdf.binned.z,binned.z.mat,non.null = 'replication',

clusters = clusters,

clusters.ldr.report = 'ALL',

clusters.verbose = T,

control = em.control(verbose = F,tol = 1e-4))

#These are the local FDR for each SNP

dim(res$mat)

head(res$mat[which(Signal),])

# These are the local FDR for each non null combination and SNP

dim(res$ldr)

View(res$ldr)

c# Pi matrix:

dim(res$Pi)

head(res$Pi)

# we display the results

#how many are significant after correcting to multiplicity

#saving results for plot, due to runtime restrictions on CRAN

#ind=which(-log10(res$mat[,2])>1)

#Fdr = res$mat[ind,2]

#Signal.plot = Signal[ind]

#Manhattan_plot_data = data.frame(ind = ind,Fdr = Fdr,Signal = Signal.plot)

#save(Manhattan_plot_data,file = '/home/barak/repfdr_Project/repfdr/vignettes/Man_Plot.Rdata')

res$ldr provides the estimated posterior probability that the number of studies with association status
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(−1, 0, 1) is exactly (x, y, z) if nr.association = 3, or (0, 1) is exactly (x, y) if nr.association =2. For
example, P̂ r ((#hi = −1, #hi = 0, #hi = 1) = (2, 14, 0)) = 4.2 · 10−7 for SNP1 in the table

H:-1 H:0 H:1 SNP 1 SNP 2 SNP 3 SNP 4 SNP 5
16 0 0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
15 1 0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
14 2 0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
13 3 0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
12 4 0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
11 5 0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
10 6 0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
9 7 0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
8 8 0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
7 9 0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
6 10 0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
5 11 0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
4 12 0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
3 13 0 0.000000000 0.000000001 0.000000000 0.00000000 0.000000000
2 14 0 0.000000421 0.000004392 0.000004191 0.00000000 0.000000375
1 15 0 0.001413187 0.007068882 0.004319694 0.00133313 0.002938139
0 16 0 0.984685473 0.992926725 0.994151189 0.99126642 0.991273430

15 0 1 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
14 1 1 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
13 2 1 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000

We draw a manhattan plot, in blue are the SNPs with non null signal. Red SNPs are false positives.
Manhattan plot has been truncated at −log10(Fdr) = 1.

load('Man_Plot.Rdata')

#Manhattan plots

col_vec = rep(1,nrow(Manhattan_plot_data)) + 3*Manhattan_plot_data$Signal +

1*(!Manhattan_plot_data$Signal & Manhattan_plot_data$Fdr<=0.05)

plot(Manhattan_plot_data$ind,-log10(Manhattan_plot_data$Fdr),ylab = '-log(Fdr)',xlab = 'SNP Index',

col = col_vec,

main = 'Manhattan plot ( truncated at -log10(Fdr) = 1) ',cex=0.3,pch=20)

abline(h = -log10(0.05),col = 2)
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Reported = which(Manhattan_plot_data$Fdr <= 0.05)

length(Reported)

## [1] 1154

FP = which(Reported %in% which(!Manhattan_plot_data$Signal))

length(FP)

## [1] 57

Where we have 1154 reported SNPs, 57 of which are false positive.

Appendix: repfdr on clusters algorithm

We describe the algorithm for the case nr.association=3. For the nr.association=2 case the implementation is
similar.

Let binc,i(j) be the bin number of the jth SNP, in the ith study of the cth cluster. The number of studies in

the c cluster will be Nc. The number of clusters will be C. The total number of studies will be N =
∑C

i=1 Ni

Let f̂−1,c,i(b), f̂0,c,i(b), f̂1,c,i(b) be the discretized density estimations, for the ith study in the cth cluster, for
the null, positive association and negative association hypothesis. The argument b represents the density of
the bth cell in the partition of the Z axis.

Both binc,i(j) and f̂−1,c,i(b), f̂0,c,i(b), f̂1,c,i(b) are given by the function ‘ztobins’.

f̂0,c,i(binc,i(j)) is therefore the probability estimate for the bin of the jth snp in the appropriate study and

cluster, under the null. Similarly we have f̂1,c,i(binc,i(j)) and f̂−1,c,i(binc,i(j))

The outcome of the RepFdr procedure inside cluster c, is a matrix of the form:
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Table 1: An illustration of all possible hypotheses states for Nc studies, as well as their denoted probability.

The sum of the probabilities is 1

Study 1 Study 2 . . . Study Nc π

0 0 0 over remaining in row 0 π(0,0,. . . ,0)

1 0 0 over remaining cols in row 0 π(1,0,. . . ,0)

-1 0 0 over remaining in row 0 π(−1,0,. . . ,0)

. . . . . . . . . . . . . . .
-1 -1 -1 over remaining in row 0 π(−1,0,. . . ,0)

This table has 3Nc rows (or 2Nc for the nr.association=2 case)

We now perform an aggregation using the above table, for the computation of the Local FDR for the jth
SNP. The aggregation is to a table of the form:

Table 2: All possible hypotheses states combinations so that exactly k are -1, l are 0, and m are 1, for the Nc

studies, as well as their denoted local fdr for feature j.

Study 1 Study 2 . . . Study N_c

Nc 0 0 lfdr
(c)
(Nc,0,0)(j)

Nc − 1 1 0 lfdr
(c)
Nc−1,1,0(j)

Nc − 2 1 1 lfdr
(c)
Nc−2,1,1(j)

. . . . . . . . . . . .

0 0 Nc lfdr
(c)
0,0,Nc

(j)

With the rows being a coarser partition of the prior π .The first three columns give the partition of π to
the total number of studies which are positive non null, null or negative non null. The last column gives
the aggregated probability for the coarser partition (the local fdr, per cluster, for all hypotheses having this
number of positive non nulls, negative non nulls and nulls, no matter which are which).

Let Gk,l,m be the set of all vectors of size Nc composed of exactly k entries being -1,l entries being 0, m entries
being 1. Let ui be the state for the ith study (i.e., ui ∈ −1, 0, 1) of the vector û = (u1, . . . , uNc

) ∈ Gk,l,m

The probability that feature j has exactly k hypotheses states -1, l hypotheses states 0, and m hypotheses
states 1 among the Nc studies in cluster c, given the binned z-scores binc,1(j), . . . , binc,Nc

(j), is estimated to
be:

lfdrc
k,l,m(j) =

Nc
∑

~u∈Gk,l,m

[π~u ·

Nc
∏

i=1

f̂ui,c,i(binc,i(j))]

Table 2 has
(

Nc+2
2

)

rows (splitting Nc indistinct balls into three bins). The equivalent table for the

nr.association=2 case, has
(

Nc+1
1

)

= Nc + 1 rows (splitting Nc indistinct balls into two bins).

All the local fdrs in the last column of Table 2 can be computed by a single pass on the RepFdr π matrix in
Table 1 since each of the rows of Table 1 belongs to a single row in Table 2, and all the vectors belonging to a
row in Table 2 are in Table 1: one allocates the matrix (for all k,l,m entries) for lfdr(c) , and aggregates the

probabilities π~u ·
∏Nc

i=1 f̂ui,c,i(binc,i(j)) for the rows of Table 1 to their appropriate cells in the lfdr(c) column
of Table 2. Table 2 for the jth feature in cluster c will be denoted by LFDR(c)(j).

The per cluster LFDR(c)(j) tables are combined, by an outer product, multiplying the lfdr probabilities of
different clusters: The LFDR table (no c superscript, this is for aggregation over clusters):
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Table 3:All possible hypotheses states combinations so that exacktly k are -1, l are 0, and m are 1, for the N

studies, as well as their denoted local fdr, for feature j.

# Studies:-1 # Studies:0 # Studies:1 lfdr

N 0 0 lfdr
(c)
Nc,0,0

N - 1 1 0 lfdr
(c)
Nc−1,1,0

N - 2 1 1 lfdr
(c)
Nc−2,1,1

. . . . . . . . . . . .

0 0 N lfdr
(c)
0,0,Nc

The table is computed by an iterative algorithm, described as follows. For simplicity of notation, we define
the operator M(T (1), T (2)) which combines two tables, e.g., T (1) = LFDR(c1)(j) and T (2) = LFDR(c2)(j).
The definition of M is given in algorithm form, rather than equation.

We will denote by T
(1)
k1,−1 the Table entry in the k1 th row and first column, i.e., the number of studies with

hypothesis state -1. Similarly, T
(1)
k1,0 and T

(1)
k1,1 are the entries in the second and third columns, respectively, of

the k1 th row.

The probability that feature j has exactly k = T
(1)
k1,−1 hypotheses states -1, l = T

(1)
k1,0 hypotheses states

0, and m = T
(1)
k1,1 hypotheses states 1 among the studies from which T (1) is composed, is denoted by

T
(1)
k1,lfdr = lfdr

(1)
k,l,m(j).
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Algorithm for computing M(T (1), T (2))

(1) Generate new lfdr table with no rows , named T (3).

(2) For k1 = 1 to nr.rows(T (1)) :

(2.1) For k2 = 1 to nr.rows(T (2)) :

(2.1.1) c−1 ← T
(1)
k1,−1 + T

(2)
k2,−1

(2.1.2) c0 ← T
(1)
k1,0 + T

(2)
k2,0

(2.1.3) c1 ← T
(1)
k1,1 + T

(2)
k2,1

(2.1.4) if T (3) has a k3 such that (T
(3)
k3,−1, T

(3)
k3,0, T

(3)
k3,1) = (c−1, c0, c1)

(2.1.4.1) T
(3)
k3,lfdr ← T

(3)
k3,lfdr + T

(1)
k1,lfdr · T

(2)
k2,lfdr

(2.1.5) else

(2.1.5.1) knew ← nr.rows(T (3)) + 1

(2.1.5.2) T
(3)
knew,−1, T

(3)
knew,0, T

(3)
knew,1 ← (c−1, c0, c1)

(2.1.5.3) T
(3)
knew,lfdr ← T

(1)
k1,lfdr · T

(2)
k2,lfdr

(3) Return T (3)

In practice, it is best to implement lfdr tables with preallocated space and an indexing function from
(c−1, c0, c1) to a row number. Another option is the use of a “hashmap” (in our package, implementation is
with a standard “hashmap” from STL). Using the operator M(T (1), T (2)), the procedure of computing LFDR
is written as:

Algorithm for computing LFDR(j) over all clusters

(1) LFDR(j)←M(LFDR(1)(j), LFDR(2)(j))

(2) for i = 3 to C :

(2.1) LFDR(j)←M(LFDR(j), LFDR(i)(j))

This is the core of the iterative algorithm, breaking down the computation of the lfdr to iterative executions
of the same operator.
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