Package ‘rle’

September 21, 2020
Version 0.9.2
Date 2020-09-21
Title Common Functions for Run-Length Encoded Vectors

Description Common 'base’ and 'stats' methods for 'rle' objects, aiming to make it possi-
ble to treat them transparently as vectors.

Depends R (>=3.5)
Imports methods
Copyright file inst/ COPYRIGHT

BugReports https://github.com/statnet/rle/issues
License GPL-3

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Encoding UTF-8

Suggests covr

R topics documented:

rle-package L e e
asarle . .. oL e
COMPIESS « o v v v v e e e et e e e e e e e e e e e e
compress.rle L e
Extractrle L e e

Index

https://github.com/statnet/rle/issues

2 as.rle

rle-package The rle Package

Description

Common base and stats methods for rle objects, aiming to make it possible to treat them trans-
parently as vectors.

History

This package grew out of the needs of the ergm package for a run-length encoded representation of
extremely long vectors with a small number of contiguous runs, and these functions were originally
implemented in the statnet.common package.

It has been split out into its own package to enable others to use this functionality without installing
any unnecessary dependencies and to facilitate contributions under a simplified license.

What works and what doesn’t

The long-run aim of this package is to make it possible to treat r le objects transparently as unnamed
vectors. As of this writing, the biggest unimplemented feature are:

* The indexing ([and [[) operators. It is not possible to extract or replace individual ele-
ments of the vector represented by an rle object, though it is possible to access its underlying
representation (i.e., $lenths and $values) by name using any of the above operators or the $
operator.

* Method rep.rle currently has limited functionality.

as.rle Coerce to rle if not already an rle object

Description

Coerce to rle if not already an rle object
Usage
as.rle(x)

S3 method for class 'rle'’
as.rle(x)

Default S3 method:
as.rle(x)

Arguments

X the object to be coerced.

compress 3

compress A generic function for compressing a data structure.

Description

A generic function for compressing a data structure.

Usage
compress(x, ...)
Arguments
X the object to be compressed.
additional arguments to methods.
compress.rle Compress the rle object by merging adjacent runs
Description

Compress the rle object by merging adjacent runs

Usage
S3 method for class 'rle’
compress(x, ...)

Arguments
X an rle object.

additional objects; if given, all arguments are concatenated.

Note

Since rle stores run lengths as integers, compress. rle will not merge runs that add up to lengths
greater than what can be represented by a 32-bit signed integer (2147483647).

4 Extract.rle

Examples

x <- rle(as.logical(rbinom(10,1,.7)))
y <- rle(as.logical(rbinom(10,1,.3)))

stopifnot(identical(rle(inverse.rle(x)&inverse.rle(y)),compress(x&y)))

big <- structure(list(lengths=as.integer(rep(.Machine$integer.max/4,6)),
values=rep(TRUE,6)), class="rle")

stopifnot(all(aggregate(as.numeric(lengths)~values,
data=as.data.frame(unclass(big)),FUN=sum)

aggregate(as.numeric(lengths)~values,
data=as.data.frame(unclass(compress(big))),
FUN=sum)))

Extract.rle Indexing Methods for rle Objects

Description

These methods are defined and produce an error (except for character input) to future-proof code
that depends on the rle package by preventing their use.

Usage

S3 method for class 'rle'’
x[i, ...]

S3 replacement method for class 'rle

x[i, ...] <- value

S3 method for class 'rle’

x[[i, ...]1]

S3 replacement method for class 'rle’
x[[i, ...J] <- value

S3 method for class 'rle'
x$name

S3 replacement method for class 'rle

x$name <- value

Arguments

X, i, name, value, ...
Arguments to indexing operators. See Extract documentation in the base pack-
age.

Math.rle 5

Details

At this time, the rle package does not support indexing operations by logical or numeric indices,
but it is likely to do so in the future. Therefore, we reserve the syntax now to prevent users of this
package from relying on the default behaviour of the indexing operators.

Value

At this time, all functions raise an error except for character indices. This behaviour can be over-
ridden by setting options(rle.unclass_index=TRUE), which effectively unclasses the objects
before indexing.

Examples

Indexing by character or by $ works, including sub-indexing.
x <- rle(1:5)

x[["values"]] <- 2:6

X

x$values[2:3] <- 7:8

X

Not run:

Numerical indexing doesn't, unless “options(rle.unclass_index=TRUE)" is set.
x[1]

x[[1]]

End(Not run)

Math.rle Mathematical functions for rle Objects

Description

Mathematical functions that work independently elementwise on vectors described in Math are
implemented for rle objects. See Details for list of exceptions.

Usage
S3 method for class 'rle'
Math(x, ...)

Arguments
X An rle object.

Additional arguments.

6 Ops.rle

Details

Supported functions include all elements of the S3 Math group excluding the "cumulative" ones,
which are not supported at this time and will raise an error. As of this writing, functions supported
include (from R help) abs, sign, sqrt, floor, ceiling, trunc, round, signif, exp, log, expm1,
loglp, cos, sin, tan, cospi, sinpi, tanpi, acos, asin, atan, cosh, sinh, tanh, acosh, asinh,
atanh, 1gamma, gamma, digamma, and trigamma.

Functions cumsum, cumprod, cummax, and cummin are not supported at this time and will raise an
erITor.

Value

In every supported case, the call should result in an rle that would have resulted had the call been
applied to the original (uncompressed) vector, then compressed using rle. (At no point in the
calculation is the uncompressed vector actually constructed, of course.)

By default, the functions do not merge adjacent runs with the same value. This must be done
explicitly with compress.rle.

Examples
x <- rle(sample(runif(2), 10, c(.7,.3), replace=TRUE))

stopifnot(isTRUE(all.equal(sin(inverse.rle(x)),inverse.rle(sin(x)))))
stopifnot(inherits(try(cumprod(x)), "try-error"))

Ops.rle Unary and Binary Operations for rle Objects

Description

Unary and binary Arithmetic and Logic operators (with exceptions given below) are implemented
between two rle objects and between an rle object and a scalar.

Usage
S3 method for class 'rle'’
Ops(el, e2)

Arguments
el, e2 Arguments to unary (e1) and binary (e1 and e2) operators.

Details
Supported operations include all elements of the Ops group, as well as xor. Within the Arithmetic
and Logic operators, this includes (taken from the R help): +, -, *, /, *, <, >, <=, >=, = == %%,
%/%, &, |, !, and xor; but excludes non-vector logical functions and operators such as isTRUE and

&&.

rep.rle 7

Value

In every supported case, the operation should result in an rle that would have resulted had the op-
eration been applied to the original (uncompressed) vectors, then compressed using rle, with the
proviso that if the resulting function creates adjacent runs of the same value, they are not merged.
This must be done explicitly with compress.rle. (At no point in the calculation are the uncom-
pressed vectors actually constructed, of course.)

An operation between an rle and a zero-length object produces an empty rle.

Examples

x <- rle(as.logical(rbinom(10,1,.7)))
y <- rle(as.logical(rbinom(10,1,.3)))

stopifnot(isTRUE(all.equal((!inverse.rle(x)),inverse.rle(!x))))
stopifnot(isTRUE(all.equal((inverse.rle(x)|inverse.rle(y)),inverse.rle(x|y))))
stopifnot(isTRUE(all.equal((inverse.rle(x)&inverse.rle(y)),inverse.rle(x&y))))

x <- rle(sample(c(-1,+1), 10, c(.7,.3), replace=TRUE))
y <- rle(sample(c(-1,+1), 10, c(.3,.7), replace=TRUE))

stopifnot(isTRUE(all.equal((inverse.rle(x)*inverse.rle(y)),inverse.rle(x*y))))
stopifnot(isTRUE(all.equal((2*inverse.rle(y)),inverse.rle(2*xy))))
stopifnot(isTRUE(all.equal((inverse.rle(x)*2),inverse.rle(x*2))))
stopifnot(isTRUE(all.equal((inverse.rle(x)/inverse.rle(y)),inverse.rle(x/y))))
stopifnot(isTRUE(all.equal((2/inverse.rle(y)),inverse.rle(2/y))))
stopifnot(isTRUE(all.equal((inverse.rle(x)/2),inverse.rle(x/2))))

stopifnot(isTRUE(all.equal((-inverse.rle(y)),inverse.rle(-y))))
stopifnot(isTRUE(all.equal((inverse.rle(x)-inverse.rle(y)),inverse.rle(x-y))))

stopifnot(isTRUE(all.equal((inverse.rle(x)%/%inverse.rle(y)),inverse.rle(x%/%y))))
stopifnot(isTRUE(all.equal(inverse.rle(x)==inverse.rle(y),inverse.rle(x==y))))

stopifnot(isTRUE(all.equal((inverse.rle(x)>inverse.rle(y)),inverse.rle(x>y))))

rep.rle A rep method for rle objects

Description

A rep method for rle objects

8 rle-deprecated

Usage
S3 method for class 'rle'
rep(
X7
scale = c("element”, "run"),

doNotCompact = FALSE,
doNotCompress = doNotCompact

)
Arguments
X an rle object.
see documentation for rep.
scale whether to replicate the elements of the RLE-compressed vector or the runs.

doNotCompress, doNotCompact
whether the method should call compress.rle the results before returning.
Methods liable to produce very long output vectors, like rep, have this set FALSE
by default. doNotCompact is an old name for this argument.

Note

The rep method for rle objects is very limited at this time. Even though the default setting is to
replicate elements of the vector, only the run-replicating functionality is implemented at this time
except for the simplest case (scalar times argument).

Examples
x <- rle(sample(c(-1,+1), 10, c(.7,.3), replace=TRUE))
y <- rpois(length(x$lengths), 2)

stopifnot(isTRUE(all.equal(rep(inverse.rle(x), rep(y, x$lengths)),
inverse.rle(rep(x, y, scale="run")))))

stopifnot(isTRUE(all.equal(rep(inverse.rle(x), max(y)),
inverse.rle(rep(x, max(y), scale="element")))))

rle-deprecated Deprecated functions from rle

Description

Deprecated functions from rle

Usage

compact.rle(...)

rle-methods 9

Arguments
arguments to deprecated functions.
rle-methods Miscellaneous Common Methods for rle Objects
Description

Miscellaneous Common Methods for rle Objects

Usage

S3 method for class 'rle'
c(...)

S3 method for class 'rle'’
mean(x, na.rm = FALSE, ...)

S3 method for class 'rle'
length(x)

S3 method for class 'rle'’
is.na(x)

S3 method for class 'rle'
str(object, ...)

Arguments

For c, objects to be concatenated. The first object must be of class rle.

X, object An rle object.
na.rm Whether missing values are to be ignored (TRUE) or propagated (FALSE).
Note

The 1ength method returns the length of the vector represented by the object, obtained by summing
the lengths of individual runs. This can be overridden by setting options(rle.unclass_index =
FALSE), which causes it to return the length of the underlying representation (usually 2) instead.

Examples

x <- rle(as.logical(rbinom(10,1,.7)))
y <- rle(as.logical(rbinom(10,1,.3)))

stopifnot(isTRUE(all.equal(c(inverse.rle(x),inverse.rle(y)),inverse.rle(c(x,y)))))

10

stopifnot(isTRUE(all.
stopifnot(isTRUE(all.

stopifnot(isTRUE(all.
stopifnot(isTRUE(all.

x$values[1] <- NA
y$values[1] <- NA

stopifnot(isTRUE(all.
stopifnot(isTRUE(all.

str(x)

Summary.rle

equal (mean(inverse.rle(x)),mean(x))))
equal (mean(inverse.rle(y)),mean(y))))

equal(length(inverse.rle(x)),length(x))))
equal(length(inverse.rle(y)),length(y))))

equal(is.na(inverse.rle(x)),inverse.rle(is.na(x)))))
equal(is.na(inverse.rle(y)),inverse.rle(is.na(y)))))

Summary.rle

Summary methods for rle objects.

Description

Summarisation functions for vectors described in Summary are implemented for rle objects.

Usage
S3 method for class 'rle'
Summary(..., na.rm)
Arguments

rle objects or objects that can be coerced to rle.

na.rm Whether the missing values should be ignored (TRUE) or propagated (FALSE).

Details

Supported functions include all elements of the S3 Summary group. As of this writing, functions
supported include (from R help) all, any, max, min, prod, range, and sum.

Value

In every supported case, the call should produce the same result as what would have resulted had
the call been applied to the original (uncompressed) vector. (At no point in the calculation is the
uncompressed vector actually constructed, of course.) The exception is that if values are of class
integer, the result will nonetheless always be upcast to numeric to avert overflows. This behaviour
may change in the future.

Summary.rle

Examples

11

x <- rle(as.logical(rbinom(20,1,.7)))
y <- rle(as.logical(rbinom(20,1,.3)))

stopifnot(isTRUE(all.
stopifnot(isTRUE(all.

stopifnot(isTRUE(all.
stopifnot(isTRUE(all.

y$values[2:3] <- NA

stopifnot(isTRUE(all.
stopifnot(isTRUE(all.

equal(any(x, y),any(inverse.rle(x), inverse.rle(y)))))
equal(any(y),any(inverse.rle(y)))))

equal (sum(inverse.rle(x),inverse.rle(y)),sum(x,y))))

equal(sum(inverse.rle(y)),sum(y))))

equal(sum(inverse.rle(y), na.rm=TRUE),sum(y, na.rm=TRUE))))
equal (sum(inverse.rle(y), na.rm=FALSE),sum(y, na.rm=FALSE))))

Index

[.rle(Extract.rle), 4
[<-.rle(Extract.rle), 4
[[.rle (Extract.rle), 4
[[<-.rle (Extract.rle), 4
$.rle (Extract.rle), 4
$<-.rle (Extract.rle), 4
8&, 6

Arithmetic, 6
as.rle, 2

base, 2

c.rle (rle-methods), 9
character, 4, 5

compact.rle (rle-deprecated), 8

compress, 3
compress.rle, 3, 3, 6-8

Extract, 4
Extract.rle, 4

is.na.rle (rle-methods), 9

isTRUE, 6

length, 9

length.rle (rle-methods), 9

Logic, 6
logical, 5

Math, 5, 6
Math.rle, 5
mean.rle (rle-methods), 9

numeric, 5
Ops.rle, 6
rep, 7, 8

rep.rle, 2,7
rle, 2, 3, 5-10

rle-deprecated, 8
rle-methods, 9
rle-package, 2

stats, 2

str.rle (rle-methods), 9
Summary, 10
Summary.rle, 10

unclass, 5

xor, 6

	rle-package
	as.rle
	compress
	compress.rle
	Extract.rle
	Math.rle
	Ops.rle
	rep.rle
	rle-deprecated
	rle-methods
	Summary.rle
	Index

