Package ‘xegaBNF’

February 5, 2024

Title Compile a Backus-Naur Form Specification into an R Grammar
Object

Version 1.0.0.0

Description Translates a BNF (Backus-Naur Form) specification of a
context-free language into an R grammar object
which consists of the start symbol, the symbol table,
the production table, and a short production table.
The short production table is non-recursive.
The grammar object contains the file name from
which it was generated (without a path).
In addition, it provides functions to determine the type
of a symbol (isTerminal() and isNonterminal()) and functions
to access the production table (rules() and derives()).
For the BNF specification, see Backus, John et al. (1962)
““Revised Report on the Algorithmic Language ALGOL 60".
(ALGOLG60 standards page <http://www.algol60.org/2standards.htm>,
html-edition <https://www.masswerk.at/algol60/report.htm>)
The grammar compiler is based on the APL2 implementation in
Geyer-Schulz, Andreas (1997, ISBN:978-3-7908-0830-X).

License MIT + file LICENSE

URL <https://github.com/ageyerschulz/xegaBNF>
Encoding UTF-8

RoxygenNote 7.2.3

Suggests testthat (>= 3.0.0)

NeedsCompilation no

Author Andreas Geyer-Schulz [aut, cre]
(<https://orcid.org/0009-0000-5237-3579>)

Maintainer Andreas Geyer-Schulz <Andreas.Geyer-Schulz@kit.edu>
Repository CRAN
Date/Publication 2024-02-05 20:50:09 UTC

http://www.algol60.org/2standards.htm
https://www.masswerk.at/algol60/report.htm
https://github.com/ageyerschulz/xegaBNF>
https://orcid.org/0009-0000-5237-3579

2 booleanGrammar

R topics documented:
booleanGrammar e e e e e e e e e e e e e 2
compileBNF e 3
compileShortPT 4
derive L 5
d2symb . ..o 5
isNonTerminal e 6
isTerminal e 7
makeProductionTable L 8
makeRule 9
makeStartSymbol L 10
makeSymbolTable 10
newBNF o 11
readBNF e 12
Tules . ..o e 12
symb2id e e e 13
writeBNF o e 14
xegaBNF . . . e 15

Index 18

booleanGrammar A constant function which returns the BNF (Backus-Naur Form) of a
context-free grammar for the XOR problem.
Description

A constant function which returns the BNF (Backus-Naur Form) of a context-free grammar for the
XOR problem.

Usage

booleanGrammar ()

Value

A named list with $filename and $BNF, the grammar of a boolean grammar with two variables and
the boolean functions AND, OR, and NOT.

Examples

booleanGrammar ()

compileBNF 3

compileBNF Compile a BNF (Backus-Naur Form) of a context-free grammar.

Description

compileBNF produces a context-free grammar from its specification in Backus-Naur form (BNF).
Warning: No error checking is implemented.

Usage

compileBNF (g, verbose = FALSE)

Arguments

g A character string with a BNF.

verbose Boolean. TRUE: Show progress. Default: FALSE.
Details

A grammar consists of the symbol table ST, the production table PT, the start symbol Start, and
the short production table SPT.

The function performs the following steps:

. Make the symbol table. See makeSymbolTable.
. Make the production table. See makeProductionTable.

1

2

3. Extract the start symbol. See makeStartSymbol.

4. Compile a short production table. See compileShortPT.
5

. Return the grammar.

Value
A grammar object (list) with the attributes
* name (the filename of the grammar),
e ST (symbol table),
* PT (production table),
* Start (the start symbol of the grammar), and
* SPT (the short production table).

References

Geyer-Schulz, Andreas (1997): Fuzzy Rule-Based Expert Systems and Genetic Machine Learning,
Physica, Heidelberg. (ISBN:978-3-7908-0830-X)

4 compileShortPT

Examples

g<-compileBNF (booleanGrammar())
g$ST

g$PT

g$Start

g$SPT

compileShortPT Produces a production table with non-recursive productions only.

Description

compileShortPT() produces a “short” production table from a context-free grammar. The short
production table does not contain recursive production rules. Warning: No error checking imple-
mented.

Usage

compileShortPT(G)

Arguments

G A grammar with symbol table ST, production table PT, and start symbol Start.

Details

compileShortPT() starts with production rules whose right-hand side contains only terminals. It
incrementally builds up the new PT until at least one production rule sequence from a non-terminal
to a terminal symbol.

The short production rule provides for each non-terminal symbol a minimal finite derivation into
terminals. Instead of the full production table, it is used for generating depth-bounded derivation
trees.

Value

A (short) production table is a named list with 2 columns. The first column (the left-hand side LHS)
is a vector of non-terminal identifiers. The second column (the right-hand side RHS) is a vector of
vectors of numerical identifiers. LHS[i] derives into RHS[i].

Examples

g<-compileBNF (booleanGrammar())
compileShortPT(g)

derive 5

derive Derives the identifier list which expands the non-terminal identifier.

Description

derives() returns the identifier list which expands a non-terminal identifier. Warning: No error
checking implemented.

Usage
derive(RuleIndex, RHS)

Arguments
RuleIndex An index (integer) in the production table.
RHS The right-hand side of the production table.
Value

A vector of numerical identifiers.

See Also

Other Utility Functions: id2symb(), isNonTerminal(), isTerminal(), rules(), symb2id()

Examples

a<-booleanGrammar () $BNF
ST<-makeSymbolTable(a)
PT<-makeProductionTable(a,ST)
derive(1, PT$RHS)

derive(2, PT$RHS)

derive(3, PT$RHS)

derive(5, PT$RHS)

id2symb Convert a numeric identifier to a symbol.

Description

id2symb () converts a numeric id to a symbol.

Usage
id2symb(Id, ST)

6 isNonTerminal

Arguments
Id A numeric identifier (integer).
ST A symbol table.

Value

* A symbol string if the identifier exists or

* an empty character string (character (9)) if the identifier does not exist.

See Also

Other Utility Functions: derive(), isNonTerminal(), isTerminal(), rules(), symb2id()

Examples

g<-compileBNF (booleanGrammar())

id2symb(1, g$ST)

id2symb(2, g$ST)

id2symb(5, g$ST)

id2symb(12, g$ST)

id2symb (15, g$ST)

identical(id2symb(15, g$ST), character(@))

isNonTerminal Is the numeric identifier a non-terminal symbol?

Description

isNonTerminal() tests if the numeric identifier is a non-terminal symbol.

Usage

isNonTerminal(Id, ST)

Arguments
Id A numeric identifier (integer).
ST A symbol table.

Details

isNonTerminal() is one of the most frequently used functions of a grammar-based genetic pro-
gramming algorithm. Careful coding pays off! Do not index the symbol table as a matrix (e.g.
ST[2,2]), because this is really slow!

isTerminal 7

Value

* TRUE if the numeric identifier is a terminal symbol.
* FALSE if the numeric identifier is a non-terminal symbol.

* NA if the symbol does not exist.

See Also
Other Utility Functions: derive(), id2symb(), isTerminal(), rules(), symb2id()

Examples

g<-compileBNF (booleanGrammar())
isNonTerminal (1, g$ST)
isNonTerminal(2, g$ST)
isNonTerminal (5, g$ST)
isNonTerminal (12, g$ST)
isNonTerminal (15, g$ST)
identical(isNonTerminal (15, g$ST), NA)

isTerminal Is the numeric identifier a terminal symbol?

Description

isTerminal() tests if the numeric identifier is a terminal symbol.

Usage
isTerminal(Id, ST)

Arguments
Id A numeric identifier (integer).
ST A symbol table.

Details

isTerminal() is one of the most frequently used functions of a grammar-based genetic program-
ming algorithm. Careful coding pays off! Do not index the symbol table as a matrix (e.g. ST[2, 2]),
because this is really slow!

Value

* TRUE if the numeric identifier is a terminal symbol.
* FALSE if the numeric identifier is a non-terminal symbol.

* NA if the symbol does not exist.

8 makeProductionTable

See Also

Other Utility Functions: derive(), id2symb(), isNonTerminal(), rules(), symb2id()

Examples

g<-compileBNF(booleanGrammar())
isTerminal(1, g$ST)

isTerminal(2, g$ST)

isTerminal(5, g$ST)

isTerminal (12, g$ST)

isTerminal (15, g$ST)
identical(isTerminal(15, g$ST), NA)

makeProductionTable Produces a production table.

Description

makeProductionTable() produces a production table from a specification of a BNF. Warning: No
error checking implemented.

Usage

makeProductionTable(BNF, ST)

Arguments
BNF A character string with the BNF.
ST A symbol table.

Value

A production table is a named list with elements $LHS and $RHS:
* The left-hand side LHS of non-terminal identifiers.

* The right-hand side RHS is represented as a vector of vectors of numerical identifiers.

The non-terminal identifier LHS[i] derives into RHS[i].

Examples

a<-booleanGrammar () $BNF
ST<-makeSymbolTable(a)
makeProductionTable(a,ST)

makeRule 9

makeRule Transforms a single BNF rule into a production table.

Description

makeRule () transforms a single BNF rule into a production table.

Usage

makeRule(Rule, ST)

Arguments

Rule A rule.

ST A symbol table.
Details

Because a single BNF rule can provide a set of substitutions, more than one line in a production
table may result. The number of substitutions corresponds to the number of lines in the production
table.

Value

A named list with 2 elements, namely $LHS and $RHS. The left-hand side $LHS is a vector of non-
terminal identifiers and the right-hand side $RHS is a vector of vectors of numerical identifiers. The
list represents the substitution of $LHS[i] by the identifier list $RHSL[i]].

Examples

c<-booleanGrammar () $BNF

ST<-makeSymbolTable(c)

c<-booleanGrammar () $BNF

b<-strsplit(c,”;")L[[1]1]

a<-b[2:4]

a<-gsub(pattern=";" replacement="", paste(al1], al[2]1, al[3]1, sep=""))
makeRule(a, ST)

10 makeSymbolTable

makeStartSymbol Extracts the numerical identifier of the start symbol of the grammar.

Description

makeStartSymbol () returns the start symbol’s numerical identifier from a specification of a context-
free grammar in BNF. Warning: No error checking implemented.

Usage

makeStartSymbol (BNF, ST)

Arguments
BNF A character string with the BNF.
ST A symbol table.

Value

The numerical identifier of the start symbol of the BNF.

Examples

a<-booleanGrammar () $BNF
ST<-makeSymbolTable(a)
makeStartSymbol(a,ST)

makeSymbolTable Build a symbol table from a character string which contains a BNF.

Description

makeSymbolTable() extracts all terminal and non-terminal symbols from a BNF and builds a data
frame with the columns Symbols (string), NonTerminal (0 or 1), and Symbolld (int). The symbol
"NotExpanded" is added which codes depth violations of a derivation tree.

Usage
makeSymbolTable (BNF)

Arguments

BNF A character string with the BNF.

newBNF 11

Value

A data frame with the columns Symbols, NonTerminal, and SymbolID.

Examples

makeSymbolTable(booleanGrammar () $BNF)

newBNF Convert grammar file into a constant function.

Description
newBNF () reads a text file and returns a constant function which returns the BNF as a character
string.

Usage

newBNF (filename, eol = "\n")

Arguments

filename A file name.
eol End-of-line symbol(s). Default: "\n"

Details

The purpose of this function is to include examples of grammars in packages.

Value

Returns a constant function which returns a BNF.

See Also
Other File I/O: readBNF (), writeBNF ()

Examples

g<-booleanGrammar ()
fn<-tempfile()
writeBNF(g, fn)
g1<-newBNF (fn)
unlink(fn)

12 rules

readBNF Read text file.

Description

readBNF () reads a text file and returns a character string.

Usage

readBNF (filename, eol = "")
Arguments

filename A file name.

eol End-of-line symbol(s). Default: ""
Value

A named list with

* $filename the filename.

* $BNF a character string with the newline symbol \n.

See Also
Other File I/O: newBNF (), writeBNF ()

Examples

g<-booleanGrammar ()
fn<-tempfile()
writeBNF(g, fn)
g1<-readBNF (fn)
unlink(fn)

rules Returns all indices of rules applicable for a non-terminal identifier.

Description

rules() finds all applicable production rules for a non-terminal identifier.

Usage
rules(Id, LHS)

symb2id 13

Arguments

Id A numerical identifier.

LHS The left-hand side of a production table.
Value

* A vector of indices of all applicable rules in the production table or

* an empty integer (integer(@)), if the numerical identifier is not found in the left-hand side
of the production table.

See Also

Other Utility Functions: derive(), id2symb(), isNonTerminal(), isTerminal(), symb2id()

Examples

a<-booleanGrammar () $BNF
ST<-makeSymbolTable(a)
PT<-makeProductionTable(a,ST)
rules(5, PT$LHS)

rules(8, PT$LHS)

rules(9, PT$LHS)

rules(1, PT$LHS)

symb2id Convert a symbol to a numeric identifier.

Description

symb2id() converts a symbol to a numeric id.

Usage
symb2id(sym, ST)

Arguments
sym A character string with the symbol, e.g. <fe> or "NOT".
ST A symbol table.

Value

* A positive integer if the symbol exists or

* an empty integer (integer(@)) if the symbol does not exist.

14 writeBNF

See Also

Other Utility Functions: derive(), id2symb(), isNonTerminal(), isTerminal(), rules()

Examples

g<-compileBNF(booleanGrammar())
symb2id("<fe>", g$ST)

symb2id("NOT", g$ST)

symb2id("<fe", g$ST)

symb2id(”"NO", g$ST)

identical (symb2id("NO", g$ST), integer(@))

writeBNF Write BNF into text file.

Description

writeBNF () writes a character string into a textfile.

Usage

writeBNF(g, fn = NULL, eol = "\n")

Arguments
g A named list with $filename and $BNF as a character string.
fn A file name. Default: NULL.
eol End-of-line symbol(s). Default: "\n"

Details

The user writes the BNF to a text file which he edits. The newline symbols are inserted after each
substitution variant and after each production rule to improve the readability of the grammar by the
user.

Value

Invisible NULL.

See Also

Other File I/O: newBNF (), readBNF ()

xegaBNF 15

Examples

g<-booleanGrammar ()
fn<-tempfile()
writeBNF(g, fn)
gl<-readBNF(fn, eol="\n")
unlink(fn)

xegaBNF Package xegaBNF

Description

xegaBNF implements a grammar compiler for context-free languages specified in BNF and a few
utility functions. The grammar compiler generates a grammar object. This object used by the
package xegaDerivationTrees, as well as for grammar-based genetic programming (xegaGpGene)
and grammatical evolution (xegaGeGene.

BNF (Backus-Naur Form)
Grammars of context-free languages are represented in Backus-Naur Form (BNF). See e.g. Backus
etal. (1962).
The BNF is a meta-language for specifying the syntax of context-free languages. The BNF provides

1. non-terminal symbols,

2. terminal symbols, and

3. meta-symbols of the BNF.
A non-terminal symbol has the following form: <pattern>, where pattern is an arbitrary sequence
of letters, numbers, and symbols.

A terminal symbol has the following form: "pattern”, where pattern is an arbitrary sequence of
letters, numbers, and symbols.

The BNF has three meta symbols, namely ::=, |, and ; which are used for the specification of
production (substitution) rules. ::= separates the left-hand side of the rule from the right-hand
side of the rule. ; indicates the end of a production rule. | separates the symbol sequences of a
compound production rule. A production rule has the following form:

LHS : :=RHS;

where LHS is a single non-terminal symbol and RHS is either a simple symbol sequence or a com-
pound symbol sequence.

A production rule with a simple symbol sequence specifies the substitution of the non-terminal
symbol on the LHS by the symbol sequence of the RHS.

A production rule with a compound symbol sequence specifies the substitution of the non-terminal
symbol on the LHS by one of the symbol sequences of the RHS.

Editing BNFs
The BNF may be stored in ASCII text files and edited with standard editors.

16 xegaBNF

The Internal Representation of a Grammar Object
A grammar object is represented as a named list:

* $name contains the filename of the BNF.
* $ST the symbol table.

* $PT the production table.

o $Start the start symbol of the grammar.

* $SPT a short production table without recursive rules.

The Compilation Process
The main steps of the compilation process are:

. Store the filename.

. Make the symbol table. See makeSymbolTable.

. Make the production table. See makeProductionTable.
. Extract the start symbol. See makeStartSymbol.

. Compile a short production table. See compileShortPT.

A L W =

. Return the grammar.

The User-Interface of the Compiler

compileBNF(g) where g is a character string with a BNF.

Utility Functions for xegaX-Packages

¢ isTerminal, isNonTerminal: For testing the symbol type of identifiers in a grammar object.

* rules, derives: For choosing rules and for substitutions.

The Architecture of the xegaX-Packages

The xegaX-packages are a family of R-packages which implement eXtended Evolutionary and Ge-
netic Algorithms (xega). The architecture has 3 layers, namely the user interface layer, the popula-
tion layer, and the gene layer:

» The user interface layer (package xega) provides a function call interface and configuration
support for several algorithms: genetic algorithms (sga), permutation-based genetic algo-
rithms (sgPerm), derivation-free algorithms as e.g. differential evolution (sgde), grammar-
based genetic programming (sgp) and grammatical evolution (sge).

» The population layer (package xegaPopulation) contains population related functionality as
well as support for population statistics dependent adaptive mechanisms and parallelization.

* The gene layer is split into a representation-independent and a representation-dependent part:

1. The representation indendent part (package xegaSelectGene) is responsible for variants
of selection operators, evaluation strategies for genes, as well as profiling and timing
capabilities.

2. The representation dependent part consists of the following packages:

xegaBNF 17

— xegaGaGene for binary coded genetic algorithms.
— xegaPermGene for permutation-based genetic algorithms.
— xegaDfGene for derivation free algorithms as e.g. differential evolution.
— xegaGpGene for grammar-based genetic algorithms.
— xegaGeGene for grammatical evolution algorithms.
The packages xegaDerivationTrees and xegaBNF support the last two packages:
— xegaBNF essentially provides a grammar compiler.
— xegaDerivationTrees implements an abstract data type for derivation trees.

Copyright
(c) 2023 Andreas Geyer-Schulz

License

MIT

URL
<https://github.com/ageyerschulz/xegaBNF>

Installation

From CRAN by install.packages('xegaBNF')

Author(s)

Andreas Geyer-Schulz

References

Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Naur, Peter, Perlis, A. J., Ruthishauser,
H., and Samelson, K. (1962) Revised Report on the Algorithmic Language ALGOL 60, IFIP, Rome.

Index

x File I/O
newBNF, 11
readBNF, 12
writeBNF, 14

* Grammar Compiler
compileBNF, 3

* Package Description
xegaBNF, 15

x Utility Functions
derive, 5
id2symb, 5
isNonTerminal, 6
isTerminal, 7
rules, 12
symb2id, 13

booleanGrammar, 2

compileBNF, 3
compileShortPT, 3,4, 16

derive, 5, 6-8, 13, 14

id2symb, 5,5,7, 8, 13, 14
isNonTerminal, 5, 6,6, 8, 13, 14
isTerminal, 5-7,7, 13, 14

makeProductionTable, 3, 8, 16
makeRule, 9
makeStartSymbol, 3, 10, 16
makeSymbolTable, 3, 10, /16

newBNF, 11, 12, 14

readBNF, /1, 12, 14
rules, 5-8, 12, 14

symb2id, 5-8, 13, 13
writeBNF, /1, 12, 14

xegaBNF, 15

18

	booleanGrammar
	compileBNF
	compileShortPT
	derive
	id2symb
	isNonTerminal
	isTerminal
	makeProductionTable
	makeRule
	makeStartSymbol
	makeSymbolTable
	newBNF
	readBNF
	rules
	symb2id
	writeBNF
	xegaBNF
	Index

