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Introduction

The purpose of this document is to provide descriptions and discussions of the various components of the cneteditor application in order to help developers understand the design (and the reasoning behind the design choices) of the application.

Model-View Architecture

cneteditor employs a custom model-view architecture.  At first, Qt's model-view framework was used, but unfortunately, it can't handle the insane amount of data contained within modern control networks.  Qt's model-view classes are very cool, and worked well for networks up to 10,000 measures.  However, after about 20,000 measures, the program would start to slow down drastically.  At 100,000 measures, cneteditor would become completely unresponsive and useless.  Since many modern networks now have millions of measures, something had to be done.  Qt's model-view classes had provided many conveniences, but they were costly.  Usually, implementing custom models and delegates are enough to gain enough speed for the job, but for cneteditor this was not so.  The maintenance of model indexes within non-virtual methods inside QAbstractItemView meant that we needed to implement custom views as well.

To achieve the speed required for displaying control networks, a completely custom model-view architecture has been created for cneteditor.  It is very fast, and extensible within the context of control networks.  However, the model-view code used for cneteditor can not be easily used to display other types of data.  Also, our models will not work with Qt's views, and Qt's models will not work with our views.  Our custom models are designed specifically to work with our custom views, and vice versa.

The biggest difference between working with Qt's model-view architecture and cneteditor's model-view architecture is that in cneteditor there are no model indexes.  To help illustrate this important design distinction, consider this car stereo analogy:  When installing an after market CD player for a car, the new CD player's wire harness must be connected to the car's wire harness.  The plug that went into the car's factory radio will not fit into the new radio, and there are two main ways that this problem is solved.  The first way is to cut off the factory plug (on the car's wire harness), and to splice the wires one by one into the wires on the new radio's harness.  The color schemes between the two harnesses don't match, and the car's radio wiring is now hacked up.  This means that later if you want to sell the car but want to keep the radio, you have to splice the old plug back into the car (if you still have it!).  The better way is to buy another harness, that translates between the car's factory radio wiring and the wiring on the harness that comes with the new radio.  This is possible because although different cars have different wiring schemes and different plugs, aftermarket radio manufacturers have agreed on a standard color scheme.  For any car, there is a harness you can buy that your car's factory plug can connect to, and that translates to the aftermarket standard.  So, by splicing one of these harnesses into the one that came with the radio (which is easy since the colors match), you can plug your new radio into your cars factory harness without hacking up your car at all.  When it comes time to sell the car, you just unplug the new radio, and plug the old one back in.  This interface layer can be compared to Qt's model index layer for their model-view architecture.  To use Qt's model-view classes, you just code the translation both ways between your data and model indexes.  This translation in practice though, is always a translation between model indexes and wrappers of your data, where some of the translating is facilitated by these wrappers.  In effect then, model indexes can be thought of as a wrapper around a wrapper of the data you want to display.  Much more about this later but I'm going off on a tangent so lets back up a bit.  All of Qt's item view classes deal with model indexes, which means that once the translating has been implemented, various views can be plugged in and out.  It also means that if new and perhaps more efficient translating code (a new model) needs to be written, the same views can be reused.  Like the translating harness in the car radio example, model indexes allow for modularity by introducing a layer of abstraction between components that communicate with each other.

Unfortunately, unlike the translating harness in the car stereo example, this layer in Qt's architecture is being used for more than simple translations.  The parent of all item view classes, QAbstractItemView, maintains model indexes internally for every piece of data in the model.  It does this to support many of the conveniences (like selections) that the Qt item-view classes provide.  Because of the huge performance penalty that this incurs, we were then on our own to implement the views that show control network data in cneteditor.  We could have done this in a way that still used model indexes, and just didn't try to keep track of them.  However, we chose not to because of several reasons, but mainly it came down to this:  Sometimes conforming to Qt's model view interfaces led to extra, redundant, or unclear code.  We didn't feel that the benefits achieved by the more modular design would ever be exploited.  We felt that gaining speed would be more easily achieved without them, and that we would ultimately end up with a faster product.  The result is that our models are hard-wired to our views.  Our model-view architecture is monolithic, which many might say is in contradiction to the reason for model view in the first place, which by definition emphasizes the separation between model and view.  However, we strongly feel that this was the correct decision, and we hope you better understand why we did this as you learn more about cneteditor.

Custom Models

If you have never implemented a custom tree model for Qt's model view framework, or are not at least familiar with how this works, I recommend following a tutorial for this.  There are sever excellent tutorials out there, my favorite of which are actually videos on you tube.  Go search for Qt custom tree model and check it out.  In these tutorials they always show you how to make a wrapper class for your data.  The wrapper class is essentially just a tree node class, that allows you to build a tree data structure for accessing your data.  The tree does not need to actually store the data, it just needs to know how to get it.  In the Qt model-view architecture, translation is done between model indexes and tree nodes.  In cneteditor, models provide these tree nodes directly to the views (or other models) that they drive.  We call these tree nodes “tree items.”  Tree items in cneteditor do much more than anything you will see in those tutorials, but their core purpose is the same.

Cneteditor has five views, each of which require a model to drive them.  Three of these are tree views while the other two are table views.  For now, let us consider only the tree views.  One is for displaying points and measures, another is for displaying images and points, and the last is for displaying images and images (showing what images are connected to each other).  Each of these views is driven by PointMeasureTreeModel, ImagePointTreeModel, and ImageImageTreeModel respectively, which are all children of AbstractTreeModel.  AbstractTreeModel contains most of the functionality, but has one pure virtual method called “rebuildItems” that each of the children must implement.  The rebuildItems method is responsible for the creation of tree items, and thus defines what data the model provides.  When called, the rebuildItems slot will use QtConcurrent to background and parallelize the task of creating tree items for each piece of data that the model is to be capable of providing.  While this is being done the model provides progress via the “progressValueChanged” signal.  When the rebuild finishes, the filter is reapplied (more on filtering later), and signals are emitted to notify any connected views (or proxy models) that the model's data has changed, and that new data should be requested.

Like rebuilding, filtering is backgrounded and parallelized using QtConcurrent.  What exactly that is being done will be discussed in the tree items section.  What's important for now is to know that the main difference with filtering is that tree items are being modified, not created or destroyed, and that these modifications are the same for all models.  The filtering code is thus contained within AbstractTreeModel.

As previously mentioned, cneteditor has five views.  Each of these is provided data in the form of tree items by a model.  This might seem strange at this point, since the remaining two views are table views.  “Why would table views obtain tree items?”, you might ask.  Well, although tree items are intended to form nodes of a tree data structure, they are most importantly just wrappers of data – a means to get to the data that needs to be displayed.  Furthermore, the table views should just be thought of as a different representation of the same data shown in the point-measure tree view.  All of the points that need to be displayed in the point table, also need to be displayed in the point-measure tree view.  Similarly, all of the measures that need to be displayed in the measure table, also need to be displayed in the point-measure tree view.  Since a model already exists which provides all the data we need (PointMeasureTreeModel), we simply use it to drive the tables as well as the point-measure tree view.  The tables cannot be driven directly by this tree model however, since it provides too much information.  To solve this, the proxy models PointTableModel and MeasureTableModel were created for each table.  Common functionality between them resides in a common parent called AbstractTableModel.  These proxy models receive requests for data from the table views, and provide that data by getting it from PointMeasureTreeModel.  AbstractTreeModel provides methods for acquiring data called “getItems”.  All versions of getItems take an optional flag, allowing the specification of particular types of items desired.  While the default will return all items in the given range, the proxy models pass appropriate flags when calling getItems so that they only obtain items wrapping either points or measures.  The proxy models store lists of pointers to these items that they then use to respond to requests from their views.  Naturally, when PointMeasureTreeModel is rebuilt, the lists in the proxy models need to be recreated as well.  The important thing to remember here is that the proxy models never create or destroy tree items.  They only maintain lists of pointers to these items which are owned by PointMeasureTreeModel, and define an interface between the table views and the tree model that drives them.  It is also worth mentioning that the proxy models are capable of sorting their lists of items, and that this task is also backgrounded using QtConcurrent.

Tree Items

Tree items are wrappers for data, specifically control points, measures, or graph nodes.  Tree items are also nodes of a tree data structure.  They have a parent node, and a list of children nodes.  In most tree data structures, the height of the tree is not know.  In our case however, when we build a tree we always know how high it will be.  For example, we know that in the point-measure tree there will only be points and measures.  We know that points will be top level items, and will have measures as children.  We know that the measures will have points as parents and that they will have no children of their own.  This information should be used to help guarantee some sanity of our trees.  If someone tries to add a child to a tree item that shouldn't have children, it would be nice to have an exception thrown.  Even better, it would be great if this could be prevented at compile time somehow.

You are probably starting to see now that tree items could be used for many different situations.  Also, all these differences in what a tree item could be have the potential to make life painful for anyone using these tree items.  Ideally, models and views would only have to care about one kind of tree item, and wouldn't need to check any of its attributes before using it.  Furthermore, since we know much about the structures of the trees that the tree items will be building, it would be good to have lots of redundant error checking and fail safes to ensure that the known structure of the tree isn't ever violated.  This isn't so simple though when considering cases like tree items wrapping points.  In the point-measure view they have children but in the image-point view they don't!  As you can imagine, handling all this inside of a tree item class could lead to some complex and error prone code.

The solution presents its self as we realize that there are really two distinct ways that we can evaluate how tree items can differ from each other.  To illustrate this, consider this list of just some of the things that a tree item might be expected to do:

1. add a child

2. return a list of its children

3. return a child given a row number

4. return the # of children this item has

5. return the index of a given child item

6. return data given a column title

7. return data given nothing

8. set data given a column title and new data

9. return the internal pointer used to retrieve data

10. return the internal pointer's type

Notice that the first five items in this list are related to tree hierarchy, and have nothing at all to do with how tree items get their data.  Also notice how the last five items are only concerned with how data is dealt with, and have nothing at all to do with tree hierarchy.  This separation of how things can differ makes this a problem best solved by virtual inheritance (sometimes called diamond inheritance).  The idea is that we start with an abstract class that defines pure virtual methods for all of the things in our list above.  We then create many half complete children of this abstract class.  By half complete I mean that the children will implement either the first five methods, or the last five.  Since they still have unimplemented methods inherited from that abstract parent we started with, all these children are themselves abstract.  The final step is to create concrete children by inheriting from two of the half implemented classes.

Our abstract parent is called AbstractTreeItem.  Children that implement the first five methods include AbstractParentItem and AbstractLeafItem.  Children that implement the last five include AbstractPointItem and AbstractMeasureItem.  Concrete combinations of these abstract children include PointLeafItem and ImageParentItem.  All of the implementation is in the middle layer of half implemented classes.  The concrete children only need to select what functionality they need by inheriting from the right parents.  They themselves don't implement anything. Virtual inheritance allows us to have a class for every type of item, while never coding anything twice.  By having classes like, PointLeafItem, robustness is inherently built in.  By definition, a PointLeafItem can not have children and so its not something we ever need to worry about.  Furthermore, the grandparent AbstractTreeItem defines an interface common to all items, allowing everyone to use AbstractTreeItems without having to care about where the various implementations come from.  It should be noted however that tree items do have their own RTTI (run time type identification) built in.  Although users of tree items often don't want to care what kind of item they have, this information is sometimes useful.  For example, as mentioned in the discussion about proxy models, AbstractTreeModel's getItems methods optionally take a flag to limit the types of items returned.  In this case RTTI is used in AbstractTreeModel to honor this flag.

Tree items are the backbone of cneteditor's model-view architecture.  Unlike tree node classes presented in Qt custom tree model tutorials, our tree items store attributes pertaining to how they are viewed.  For example, tree items can be collapsed, expanded, or selected.  While this might violate separation between model and view, only good things have come from this.  It allows us to support features like selections while freeing us from maintaining objects inside the views for all possible data that could be displayed.  The introduction of view state inside the tree items means that the views can stay very fast without sacrificing important features.  The most involved of these view states are a collection of links to other tree items, which are used to support filtering.  Tree items can be thought of as being visible or invisible depending on whether or not they have been filtered out.  Each tree item then stores links to both its next visible child and its next visible peer.  The getItems methods in AbstractTreeModel can then traverse the linked list created by these links to return only those items that are visible.  When a model reapplies its filter, all of the tree items get their links updated, essentially creating a new linked list.  As mentioned earlier, this process is backgrounded and parallelized using QtConcurrent, and is quite fast (much faster than a rebuild).  Filtering will be discussed in more detail in the “Filter System Architecture” section ahead.

In summary then, the tree item architecture is a collection of fairly simple classes that together make up a fairly complex architecture.  Since the complexity is in the design, not the code, tree items are fairly robust.  In fact, they make up one of the most solid and elegant components of cneteditor.

Filter System Architecture

The filtering system consists of several different interacting components: filter widgets, filter groups, filter selectors, and abstract filters.  These components exist in a hierarchy of aggregation: a filter widget contains filter groups, which contain filter selectors, which contain a single filter.  Communication travels from the filter widget down to each successive sub-level, until the filter is reached.  The result of the filter evaluation is passed back up from the filter until it finally reaches the aggregate filter widget.  Each of these components has both GUI and functional elements to it.  A Filter widget for example is just a widget that can be added to a layout in a user interface – but it also contains all of the necessary functionality to apply a filter to a piece of data, where a piece of data can be a control measure, control point, or control cube graph node.  Tree models only use the functional aspects of a filter widget, and don't care at all that it is a widget.  User interface components incorporate filter widgets, and don't care about any of its filtering functionality.

Only one filter widget class exists, and three instances of it are created at run time (one for each tree model).  Tree models need to use a filter widget anytime they perform a filter or rebuild.  When this happens, the tree models will acquire a copy of their respective filter widgets from the GUI.  Remember, filter widgets and their aggregated components are GUI components that users need to be able to interact with at any given time.  However, there are concurrency issues with users modifying these components while the tree models are using them during a filter or rebuild (remember that filters and rebuilds are threaded).  This problem was initially solved by using locking mechanisms, but this proved to be much slower than simply providing the tree models with their own copy to work with.  Every time a filter or rebuild happens, the tree models receive a new copy of their respective filter widgets.  Users only modify the GUI's version of the filtering components.  During a filter or rebuild, when the tree model calls the filter widget's evaluate() method, it does not care about whether or not the filter is inclusive or exclusive.  All it cares about is the boolean value returned by evaluate().  A return value of true indicates that the data passed the filter, while false indicates that the data did not pass the filter and thus should not be included in the results.

The filter widget aggregates filter groups. A filter group can contain many filter selectors, which allow the user to choose a specific filter from a drop-down box.  A filter group also has an evaluate() method, which calls evaluate() on all of its filter selectors and then either ANDs or ORs the results together. The resulting boolean is passed up to the group's encompassing filter widget. Thus, when the model calls evaluate() on its filter widget, the filter widget calls evaluate() on each of its filter groups, and combines the resulting booleans by either ANDing or ORing them all together.  In this way, a single evaluate() call on a filter widget produces many evaluate() calls to the filter widget's sub-components to produce the complete evaluation.

There are four different classes that exist at the filter selector level. An AbstractFilterSelector exists as a parent class, and three children derive from it: PointMeasureFilterSelector, SerialFilterSelector, and ConnectionFilterSelector.  Each of these subclasses defines a different set of filters that are available in its drop-down box, because certain filters may only make sense for the point-measure tree view, while others may only be used with the serial view or the connection view.  A filter selector keeps track of which filter is currently selected by keeping a pointer to the filter.  Remember, a filter selector can be conceptualized as a drop-down box of different filters to choose from, with only one being currently selected at a time.  Thus, when a filter selector's evaluate() method is called, it calls evaluate() on its currently selected filter.

At the abstract filter level, another architecture exists.  There are many classes that ultimately inherit from AbstractFilter.  Each of these classes represents an actual filter that can be concretely applied to a point, measure, or graph node.  A key design choice with the abstract filter architecture is that each filter can evaluate a point, measure, or graph node, as it has three evaluate() methods, one for each data type.  In cases where it simply does not make sense to filter a data item based on the current filter (e.g. applying a chooser name filter to a control measure), the evaluate() method for control measures simply returns true.  This approach eliminates a large amount of duplicate type-checking code that would have to exist if each filter accepted different data types.

Some filters may be applicable to more than one type of data item.  For example, a measure-ignored filter can be applied to both measures and points because someone may only want to see ignored measures, or they may only want to see all points that have a certain number of ignored measures.  Each filter is constructed with flags that indicate what types of data the filter can be applied to, as well as a minimum count for success.  This minimum count is used for filters that are not directly filtering on the specific data type.  In our example, the minimum count would be used by the measure-ignored filter in its point version of the evaluate() method to determine whether a point has enough ignored measures to pass the filter.  There is a single special case that exists with the minimum count.  If the minimum count is -1, the minimum count widget is not created when the filter is created, and it is not used when applying a filter.

Intermediate filter classes may exist between AbstractFilter and its concretely-implemented children.  These classes handle different types of input from the user, such as a choice from a combo box, a number, or a string.  These classes handle the creation of the correct type of GUI widget to be displayed to the user onscreen, as well as specific filter-application functionality.  These classes exist as a place for code that several similar filters share in common.

