

Web Site Creator
Introduction

This part of the manual is intended for anyone who creates
and publishes web pages using a Roxen Challenger server,
from a normal file system. It describes the functionality
Challenger provides that can be used to make it easier to cre-
ate static web pages as well as dynamic content.

It is assumed that the reader is familiar with HTML.
Most of Challenger's functions are available as RXML tags,
easily learned by anyone who knows HTML.

Concepts

The Roxen Challenger is a modular web server.

RXML
Content on web pages is written using HTML, a text format
with mark-up in the form of <tags> telling the browser how
the content should be displayed. Challenger comes with its
own macro language, RXML, that uses tags like the ones in
HTML. RXML is never sent to the browser though, but
Challenger converts all RXML tags into HTML using the
RXML parser.

RXML can be used for a number of things, such as creat-
ing graphical headings and diagrams, connecting to data-
bases or creating dynamic pages or all of the above. The bulk
of this manual describes the various RXML tags and how
they can be combined. The key to RXML is that each tag
solves a separate task. Hence several tags can be combined to
perform an even greater task.

Modules
Roxen Challenger uses a system of modules. The different
functions of Challenger is handled by different modules.
Modules are enabled and configured through the configura-
tion interface by the administrator. Many modules handle
different RXML tags, therefore, which RXML tags can be
used depends on how the administrator has configured the
virtual server. The documentation for each tag includes
information about which module handles it, if a tag is not
available, the administrator can add the proper module to
the server to enable the tag.

Modules that handle RXML tags can be written by third-
party developers or any programmer with sufficient knowl-
edge of pike and Roxen. It is also possible to create packages
of RXML tags, for use with the <use> tag. Apart from the
RXML tags in this manual there can be additional tags avail-
able at a Roxen site.

Products

The Challenger web server is the foundation of the Roxen
Platform, which also consists of the Roxen products intro-
duced below.

SiteBuilder
SiteBuilder is a we content management system. It contains
its own file structure and transparent access control system
and also provides a number of RXML tags.

Content Editor SiteBuilder's graphical user interface. It is
described in the User's manual.

Templates The use of template files facilitates the creation
and maintenance of web sites separating the content and
appearance of the web pages. The templates can be used to
control the layout to various extent or just adding function-
ality such as own-defined RXML tags to be used in the con-
tent files.

Navigation The navigation module contains a number of
tags for simple creation of advanced, graphical navigation
menus.

Access Control The Access Control system is described
briefly in the security section, but the Administrator's man-
ual contains a more thorough description.

LogView
LogView offers a number of advanced log analyzing tools.

The LogView chapter in this manual describes mainly
the <logview> tag and how it can be used to put log reports
on web pages.

IntraSeek
IntraSeek is a powerful search engine, providing tools mak-
ing a site searchable. IntraSeek requires Challenger to run,
but can index any other web site as well.

The IntraSeek chapter in this manual describes mainly
how to put search forms on web pages using some RXML
tags also provided by IntraSeek.

Database API pro
The Roxen Platform contains support for connections to a
number of databases.

Database queries can be placed directly on a web page
using RXML tags. The connections are made using RXML
database-tags and the results from the queries can be custom-
ized using many of the other RXML tags. Connections can
be made to several databases simultaneously in a single appli-
cation.

To ensure security when accessing databases, passwords
are not stored in the web page, but internally in the Chal-
lenger server.
2

Publishing web pages
Publishing web pages

Publishing web pages

To publish web pages using a Challenger web server there are
a few things the web page creator ought to know. This chap-
ter will explain the basics.

Using Challenger directly
To publish an HTML page through Challenger, the web
page creator only needs to know in what directory the files
should be placed and on what URL the pages will be found.
This is configured by the administrator of the server.

The virtual server used must have a file system module
enabled. The file system module can mount a directory from
a normal file system as a virtual file system. When referring
to other files, the path to the file must be in the virtual file
system. Both absolute and relative paths can be used.

To display the contents of a directory, a directory parsing
module is needed. If a file called index.html is found in a
directory that is mounted by a file system module, it will be
shown when pointing a browser to the URL of that direc-
tory. By default the server will look for the following files:
index.html, Main.html, welcome.html, index.cgi,

index.lpc, index.pike, in that order. The names and
the order can be configured by the administrator.

Content types

Each file fetched through a web server contains a MIME
content type that identifies what type of file it is. Thus an
HTML file has the content type text/html, while a GIF
image has the content type image/gif.

On a Challenger server, the file extension determines the
content type of that file. Usually .html or .htm files are
given the content type text/html while .gif files are given
the content type image/gif.

As a user, you usually don't have to bother with content
types. If you just give your files their standard extensions
everything will work. But sometimes, when you try out new
plugins that use their own file format, the extension and
content type that you want to use is not handled by the
server. Then the administrator for the server has to change
the configurations for the Content types module.

Some extensions might be handled by the web server
itself. The most common use is to run files through the
Main RXML parser module. This makes it possible to use
RXML tags on such pages. Depending on the policy of your
site this might be done for all .html files, or only for special
.rxml files.
3

Web Site Creator
RXML

RXML, RoXen Macro Language, is a mark-up language sim-
ilar to HTML that is handled by the Challenger web server.
RXML will always be translated to HTML by the server,
before it is sent to the browser.

The tags are either single tags or container tags accepting
one or more attributes. Some attributes can be used together
with all RXML tags:

nooutput The tag will generate no output at all. Side
effects, for example sending queries to databases, will have
effect.

noparse Can be used with all container tags. The result of
the tag will not be run through the RXML parser.

preparse Can be used with all container tags. The contents
of the tag will be run through the RXML parser before the
tag itself is handled.

The list below describes the different categories of RXML
tags.

Information tags Information tags are simple tags that
provide information about the client, the server or the date.

String tags String tags are container tags that transform
some input into HTML. The input differs, some tags use
HTML while other use tab separated text.

Variable tags Variable tags are tags that handle form vari-
ables as well as the various variable types internal to Chal-
lenger. With variable tags it is also possible to define your
own RXML tags.

URL tags Tags that handle properties of URLs and HTTP
like prestates, cookies and authorization.

If Tags If tags handle conditional showing of different con-
tent. They make it possible to optimize the pages for all
browsers as well as making advanced dynamic content.

Graphics tags Graphics tags create and manipulate images.
They can create graphical headers, real-time diagrams as well
as animated clocks.

Database tags Database tags communicate with SQL data-
bases and makes it easy to incorporate data from those data-
bases into RXML pages. It is possible to connect to any
number of databases.

Programming tags Programming tags are useful for doing
advanced RXML as well as for debugging Challenger mod-
ules. It is also possible to run Pike code within your RXML
pages.

IntraSeek tags The IntraSeek module adds a number of
tags for creating search forms and tags used by the search
engine when indexing pages.

The LogView tag The LogView tag is designed for placing
logs on web pages.
4

Information tags
Information tags

Information tags are simple tags that provide information
about the client, the server or some external event. Examples
are the <accessed> tag, that counts accesses to the page and
the <modified> tag which shows when the page was last
updated.

The information tags are:

<accept-language> Returns the language code of the lan-
guage the user prefers.

<accessed> Generates an access counter that shows how
many times the page has been accessed.

<clientname> Prints the name of the browser the user is
using.

<configurl> Prints the URL to the configuration interface
for this Challenger server.

<configimage> Inserts an image used by the configuration
interface.

<countdown> Counts the time to or from a specified date.

<date> Prints the date and time.

<file> Prints the path part of the URL used to get this page.

<help> Prints help texts for tags.

<available_languages> Lists the number of additional
languages the current page has been translated to, with links
to them.

<language> Prints the language of the current page.

<unavailable_language> Shows the language the user
wanted in case the page was not available in that language.

<line> Prints the current line number of the current page.

<list-tags> Lists all available RXML tags.

<modified> Prints when or by whom a page was last modi-
fied.

<number> Prints a number as a word.

<pr> Displays a Powered by Roxen Challenger logo.

<referrer> Prints the URL of the page from which the user
followed a link that brought her to this page.

<user> Prints information about the specified user.

<version> Prints the version number of the Roxen Chal-
lenger web server being used.

<accept-language> Main RXML parser

Returns the language code of the language the user prefers,
as specified by the first language in the accept-language
header.

If no accept-language is sent by the users browser None
will be returned.

full Returns all languages the user has specified, as a comma
separated list.

Example
Your preferred language is <accept-language>

Results in

<accessed> Main RXML parser

<accessed> generates an access counter that shows how
many times the page has been accessed. In combination with
the <gtext> tag you can generate one of those popular
graphical counters.

A file, AccessedDB, in the logs directory is used to store
the number of accesses to each page. Thus it will use more
resources than most other tags and can therefore be deacti-
vated in the Main RXML parser module. By default the
access count is only kept for files that actually contain an
<accessed> tag, but that can also be configured.

add=number Increments the number of accesses with this
number instead of one, each time the page is accessed.

addreal Prints the real number of accesses as an HTML
comment. Useful if you use the cheat attribute and still want
to keep track of the real number of accesses.

capitalize Capitalizes the first letter of the result.

cheat=number Adds this number of accesses to the actual
number of accesses before printing the result. If your page
has been accessed 72 times and you add <accessed

cheat=100> the result will be 172.

factor=percent Multiplies the actual number of accesses by
this factor.

file=filename Shows the number of times the page file-

name has been accessed instead of how many times the cur-
rent page has been accessed. If the filename does not begin
with "/", it is assumed to be a URL relative to the directory
containing the page with the <accessed> tag. Note, that
you have to type in the full name of the file. If there is a file
named tmp/index.html, you cannot shorten the name to
5

Web Site Creator
tmp/, even if you've set Challenger up to use index.html as a
default page. The filename refers to the virtual filesystem.

One limitation is that you cannot reference a file that
does not have its own <accessed> tag. You can use
<accessed silent> on a page if you want it to be possible
to count accesses to it, but don't want an access counter to
show on the page itself.

lang=ca es_CA hr cs nl en fi fr de hu it jp mi no pt ru sr
si es sv Will print the result as words in the chosen language
if used together with type=string. Available languages are ca,
es_CA (Catala), hr (Croatian), cs (Czech), nl (Dutch), en
(English), fi (Finnish), fr (French), de (German), hu (Hun-
garian), it (Italian), jp (Japanese), mi (Maori), no (Norwe-
gian), pt (Portuguese), ru (Russian), sr (Serbian), si
(Slovenian), es (Spanish) and sv (Swedish).

lower Prints the result in lowercase.

per=second minute hour day week month Shows the
number of accesses per unit of time.

prec=number Rounds the number of accesses to this num-
ber of significant digits. If prec=2 show 12000 instead of
12148.

reset Resets the counter. This should probably only be
done under very special conditions, maybe within an <if>

statement.
This can be used together with the file argument, but it is

limited to files in the currentd directory and subdirectories.

silent Print nothing. The access count will be updated but
not printed. This option is useful because the access count is
normally only kept for pages with actual <accessed> tags
on them. <accessed file=filename> can then be used to
get the access count for the page with the silent counter.

upper Print the result in uppercase.

since Inserts the date that the access count started. The lan-
guage will depend on the lang tag, default is English. All nor-
mal date related attributes can be used. See the <date> tag.

type=number string roman iso discordian stardate
Specifies how the count are to be presented. Some of these
are only useful together with the since attribute.

Example
This page has been accessed <accessed
type=string cheat=90 addreal> times since
<accessed since>.

Results in

<clientname> Main RXML parser

Prints the name of the browser the user is using.

full Returns the full name of the browser.

Example
Your browser idientifies itself as <client-
name>.

Results in

<configurl> Main RXML parser

Prints an URL to the configuration interface for this Chal-
lenger server.

Example
Link to the configuration interface

Results in

<configimage> Main RXML parser

Inserts an image used by the configuration interface.

src=back err_1 err_2 err_3 fold fold2 help ihfc manual-
note manual-tip manual-warning pike power roxen
unfold unfold2 unit Specifies which image to use.

All other attributes are sent through to the generated
 tag.

Example
<configimage src=fold>

Results in

<countdown> Countdown

This tag counts the time to or from a specified date.
Time related attributes

day=number, weekday Sets the weekday.

hour=number Sets the hour.

iso=year-month-day Sets the year, month and day, all at
once.

mday=number Sets the day of month.

min=number Sets the minute.

month=number, month Sets the month.

sec=number Sets the second.

year=number Sets the year.
6

Information tags
Presentation related attributes

combined Shows an English text describing the time
period. Example: 2 days, 1 hour and 5 seconds. You may use
the prec attribute to limit how precise the description should
be. You can also use the month attribute if you want to see
years/months/days instead of years/weeks/days.

days Prints the number of days until the time.

dogyears Prints the number of dog years until the time,
with one decimal.

hours Prints the number of hours until the time.

lang=ca es_CA hr cs nl en fi fr de hu it jp mi no pt ru sr
si es sv Will print the result as words in the chosen language
if used together with type=string. Available languages are ca,
es_CA (Catalan), hr (Croatian), cs (Czech), nl (Dutch), en
(English), fi (Finnish), fr (French), de (German), hu (Hun-
garian), it (Italian), jp (Japanese), mi (Maori), no (Norwe-
gian), pt (Portuguese), ru (Russian), sr (Serbian), si
(Slovenian), es (Spanish) and sv (Swedish).

minutes Prints the number of minutes until the time.

months Prints the number of month until the time.

nowp Returns 1 if the specified time is now, otherwise 0.
How precise now should be interpreted is defined by the prec
attributes. The default precision is one day.

prec=year month week day hour minute second A
modifier for the nowp and combined attributes. Sets the pre-
cision for these attributes.

seconds Prints how many seconds until the time.

since Counts from a time rather than towards it.

type=string number ordered How to present the result.

weeks Prints the number of weeks until the time.

when Prints when the time will occur. All <date> tag
attributes can be used.

years Prints the number of years until the time.

Example
<p>I am <countdown iso=1980-06-28 since years
type=string> years old.</p> <p>There are
<countdown year=2000 days> days left until year
2000.</p> <p>Is this a Sunday?
<if
eval='<countdown day=sunday nowp>'> Yes, this
is a Sunday.</if> <else>No, it isn´t.</else>

Results in

<date> Main RXML parser

This tag prints the date and time.

brief Generates as brief a date as possible.

capitalize Capitalizes the first letter of the result.

date Shows the date only.

day=number Adds this number of days to the current date.

hour=number Adds this number of hours to the current
date.

lang=ca es_CA hr cs nl en fi fr de hu it jp mi no pt ru sr
si es sv Used together with type=string and the part attribute
to get written dates in the specified language. Available lan-
guages are ca, es_CA (Catala), hr (Croatian), cs (Czech), nl
(Dutch), en (English), fi (Finnish), fr (French), de (Ger-
man), hu (Hungarian), it (Italian), jp (Japanese), mi
(Maori), no (Norwegian), pt (Portuguese), ru (Russian), sr
(Serbian), si (Slovenian), es (Spanish) and sv (Swedish).

lower Prints the results in lower case.

minute=number Adds this number of minutes to the cur-
rent date.

part=year month day date hour minute second yday

o year; The year

o month; The month

o day; The weekday, starting with Sunday.

o date; The number of days since the first this month.

o hour; The number of hours since midnight.

o minute; The number of minutes since the last full
hour.

o second; The number of seconds since the last full
minute.

o yday; The day since the first of January.

The return value of these parts are modified by both
type and lang.

second=number Adds this number of seconds to the cur-
rent date.

time Prints the time only.

type=number string roman iso discordian stardate
Specifies what type of date you want. Discordian and star-
date only make a difference when not using part. Note that
type=stardate has a separate companion attribute, prec, which
sets the precision.

unix_time=time_t This attribute uses the specified Unix
time_t time as the starting time, instead of the current time.
This is mostly useful when the <date> tag is used from a
Pike-script or Roxen module.

upper Prints the result in upper case.
7

Web Site Creator
Example
<date part=day type=string lang=de>

Results in

<file> Main RXML parser

Prints the path part of the URL used to get this page.

raw Prints the full path part, including the query part with
form variables.

Example
<file>

<help> Main RXML parser

Gives help texts for tags. If given no arguments, it will list all
available help texts.

for=tag Gives the help text for that tag.

Example
<help for=configurl>

Results in

<available_languages> Language

Lists the number of additional languages the current page
has been translated to, with links to them.

type=txt img Whether to present the available languages
with text or images. See the module documentation for
information about how to configure which images to send.

<language> Language

Prints the language of the current page.

type=txt img Whether to present the language with text or
an image. See the module documentation for information
about how to configure which image to send.

<unavailable_language> Language

Shows the language the user wanted in case the page was not
available in that language.

type=txt img Whether to present the unavailable language
with text or an image. See the module documentation for
information about how to configure which image to send.

<line> Main RXML parser

Prints the current line number of the current page.

Example
The current line is line <line>.

Results in

<list-tags> Main RXML parser

Lists all available RXML tags.

verbose Lists the tags with their help texts as well.

<modified> Main RXML parser

Prints when or by whom a page was last modified, by default
the current page.

by Print by whom the page was modified. Takes the same
attributes as the <user> tag.

capitalize Capitalizes the first letter of the result.

date Print the modification date. All attributes from the
<date> tag can be used.

file=path Get information from this file rather than the cur-
rent page.

lower Print the result in lower case.

realfile=path Get information from this file in the comput-
ers filesystem rather than Challenger's virtual filesystem.
8

Information tags
Example
This page was last modified <modified date
type=string>

Results in

<number> Main RXML parser

Prints a number as a word.

num=number The number in question.

lang=ca es_CA hr cs nl en fi fr de hu it jp mi no pt ru sr
si es sv The language to use. Available languages are ca,
es_CA (Catala), hr (Croatian), cs (Czech), nl (Dutch), en
(English), fi (Finnish), fr (French), de (German), hu (Hun-
garian), it (Italian), jp (Japanese), mi (Maori), no (Norwe-
gian), pt (Portuguese), ru (Russian), sr (Serbian), si
(Slovenian), es (Spanish) and sv (Swedish).

Example
<number lang=es num=42>

Results in

<pr> Main RXML Parser

Displays a Powered by Roxen Challenger logo.

size=small medium large Defines the size of the logo.

color=blue brown green purple Defines the color of the
logo.

align=left center right Defines the alignment of the logo.

Example
<pr size=medium color=green>

Results in

<referrer> Main RXML parser

Prints the URL of the page on which the user followed a link
that brought her to this page. The information comes from
the referrer header sent by the browser.

alt=string If no referrer header is found print this value
instead.

Example
You came from <referrer>, didn't you?

Results in

<user> Main RXML parser

Prints information about the specified user. By default, the
full name of the user and her e-mail address will be printed,
with a mailto link and link to the home page of that user.

The <user> tag requires an authentication module to
work.

name The login name of the user.

realname Only print the full name of the user, with no
link.

email Only print the e-mail address of the user, with no
link.

link Include links. Only meaningful together with the real-
name or email attribute.

nolink Don't include the links.

Example
<user name=wing realname>

Results in

<version> Main RXML parser

Print the version number of the Roxen Challenger web
server you are using.

Example
This page has been brought to you by <version>

Results in
9

Web Site Creator
String tags

String tags are container tags that process their contents
somehow. Examples are the <sort> tag that sorts its con-
tents and the <tablify> tag that creates good looking tables
from tab separated text files.

The contents of an RXML container tag may contain
other RXML tags. However, this is not as simple as it may
seem since the outer tag is, by default, handled first. The fol-
lowing example will try to explain what happens.

Our example contains an <obox> tag enclosing a
<smallcaps> tag.

Which will result in:

The first thing that will happen is that the RXML parser
handles the <obox> tag, which creates some HTML table
code to draw a box around its contents. The result from the
first pass will be something like:

This result will then be parsed another time by the
RXML parser, which will then run the <smallcaps> tag.

That the outer tag is handled first is usually not a prob-
lem, but in some special cases it will cause a problem. It is,
therefore, possible to give the preparse attribute to all RXML
container tags. This will cause the RXML parser to parse the
contents of the tag before parsing the actual tag.

Below follows an example where the preparse attribute
makes a huge difference.

generates

while

generates

Special Attributes
preparse is not the only special attribute that can be given
to all RXML tags. They are:

nooutput The tag will generate no output at all. Side
effects, for example sending queries to databases, will have
effect.

noparse Can be used with all container tags. The result of
the tag will not be run through the RXML parser.

preparse Can be used with all container tags. The contents
of the tag will be run through the RXML parser before the
tag itself is handled.

String tags
<ai> Makes it possible to use a database of links.

<autoformat> Replaces all line-feeds in the content with

 tags.

<case> Changes the case of the enclosed text.

<comment> The contents will be completely removed
from the page.

<doc> Simplifies writing html examples. Within the <doc>
tag { will be replaced by < and } by >. Thus eliminating the
need to write < and > manually.

<fl> Used to build folding lists.

<obox> draws outlined boxes.

<smallcaps> Prints the contents in smallcaps.

<sort> Sorts the contents alphabetically.

<source> Used to show examples of HTML or RXML
code. It will first show the source code, then a separator and
last the results of the code.

<spell> Checks and marks common misspellings in the con-
tents.

<tablify> Generates tables from the contents.

<trimlines> Removes all empty lines from the contents.

<ai> </> Indirect href

Makes it possible to use a database of links. Each link is
referred to by a symbolic name instead of the URL.

The database is updated through the configuration inter-
face.

name Which link to fetch from the database. There is a
special case, name=random that will choose a random link
from the database.
10

String tags
Example
<ai name=roxen>Roxen Platform</ai>

Results in

<autoformat> </> Main RXML parser

Replaces all linefeeds in the content with
 tags.

nobr Don't add any
 br tags.

pre Replaces all double linefeeds with <p> tags.

Example
<autoformat> It is almost like using the pre
tag. </autoformat>

Results in

<case> </> Main RXML parser

Changes the case of the text in the contents.

lower Changes all upper case letters to lower case.

upper Changes all lower case letters to upper case.

capitalize Capitalizes the first letter in the content.

Example
<case upper>upper case</case>

Results in

<comment> </> Main RXML parser

The contents will be completely removed from the page. As
opposed to HTML comments where you can still see the
comment by doing View Source in the browser.

RXML tags within the <comment> tag will not be parsed.

<doc> </> Main RXML parser

This tag simplifies writing html examples. Within the <doc>
tag { will be replaced by &< and } by &>. Thus eliminating
the need to write < and > manually.

pre Encloses the section within a <pre> tag as well.

Example
<doc pre> {table} {tr} {td} First cell {/td}
{td} Second cell {/td} {/tr} {/table} </doc>

Results in

<fl> </> Folder list tag

This tag is used to build folding lists, that are like <dl> lists,
but where each element can be unfolded. The tags used to
build the list elements are <ft> and <fd>.

folded An argument to both the <fd> itself as well as the
<ft> tag. Will make all elements in the list or that element
folded by default.

unfolded An argument to both the <fd> itself as well as
the <ft> tag. Will make all elements in the list or that ele-
ment unfolded by default.

Example
<fl> <ft folded>Moose <fd>Tastes great. <ft
unfolded>Elk <fd>Beware. </fl>

Results in

<obox> </> Outlined box

This tag draws outlined boxes.

align=left right Vertical alignment of the box.

bgcolor=color Color of the background and title label.

left=number Length of the line on the left of the title.

outlinecolor=color Color of the outline.

outlinewidth=number Width, in pixels, of the outline.

right=number Length of the line on the right of the title.

Note that the left and right attributes are constrained by
the width argument.

spacing=number Width, in pixels, of the space in the box.

style=caption groupbox Style of the box. Groupbox is
default
11

Web Site Creator
textcolor=color Color of the text inside the box.

titlecolor=color Color of the title text.

width=number Width, in pixels, of the box.

If the title is not specified in the argument list, you can
put it in a <title> container in the obox contents.

Example
<obox outlinecolor="#555555" align="left"
width="200" outlinewidth="5"> <title>Sample
box</title> This is just a sample box. </obox>

Results in

<smallcaps> </> Main RXML parser

This tag prints the contents in smallcaps

size Sets the base font size, which can be between 1 and 7.
This is used for the upper case letters.

small Sets the font size for the lower case letters.

space Inserts a space between every letter.

Example
<smallcaps size=6 small=2 space>Roxen Chal-
lenger</smallcaps>

Results in

<sort> </> Main RXML parser

Sorts the contents divided by newline or the specified separa-
tor.

separator The separator used to separate the elements that
are to be sorted.

Example
<sort> 1 Hello 3 World Are 2 You Listening </
sort>

Results in

<source> </> Main RXML parser

This tag is used to show examples of HTML or RXML code.
It will first show the source code, then a separator and last
the results of the code.

separator Use this string as a separator between the presen-
tation of the source of the result.

Example
<source separator="The result of the above
code"> Bold
<h5>This is a small heading</h5></source>

Results in

<spell> </> Spell checker

Checks and marks common misspellings in the contents.

warn Report all unknown words.

Example
<spell warn> Acctually spelling is not what I
do best. </spell>

Results in

<tablify> </> Tablify

This tag generates tables from the contents, by default in tab
separated form. This simplifies making tables significantly.

cellalign=left center right Alignment of the contents of
the cells.

cellseparator=string The separator for separating columns,
default is tab.

fields=num text This is not an argument but rather a con-
tainer tag used in the contents that sets the field type for
each column. Fields marked numerically will be right
aligned and formatted

nice Generates tables with customizable layouts. The first
row is referred to as the title row. The additional attributes
are:

bgcolor=color Sets the background color of your table.

titlebgcolor=color Sets the background color of the title
cell.

titlecolor=color Sets the font color of the title cell.

fgcolorX=color Sets the background color of cell X.
12

String tags
nicer Generates tables with even more customizable layouts
and gtext font capabilities for the title field. Nicer uses the
same attributes as nice plus these:

font=font Selects which gtext font to use for the title
field.

scale=factor Sets the scaling of the gtext font.

face=font Sets the font face to use for the HTML text.

size=number Sets the font size to use for the HTML text.

modulo=number The number of rows that are to use the
same color, default is one.

rowalign=left center right This tag aligns the contents of
the rows.

rowseparator=string Sets the separator used for separating
rows, default is newline.

Example
<tablify nice="nice" cellseparator=","> Coun-
try, Population Sweden, 8 865 051 Denmark, 5
305 042 </tablify>

Results in

<trimlines> </> Main RXML parser

This tag removes all empty lines from the contents.

Example
<pre> <trimlines> Foo Bar Gazonk </trimlines>
</pre>

Results in
13

Web Site Creator
Variable tags

Variable tags can be used to create dynamic web pages as well
as making web pages that are easier to maintain. The tags
have one thing in common, they store and retrieve informa-
tion from different places:

variables Form variables, as well as variables created with
tags like <set> and <cset>. Variables are the backbone of
RXML programming.

other Other variables only exist in output tags, like
<sqloutput>. The most common use is to transfer a value
available from the output tag to a real variable, by using <set

variable=foo other=bar>.

defines or macros are fully internal to the server. They are
mostly used for to save authors typing repetitive blocks of
text.

tags It is possible to define new tags, or to redefine an exist-
ing HTML tag.

packages Packages are ready-to-use defines and tags pro-
vided by the administrator of the server.

The variable tags are:

<set> Sets a variable to a new value.

<unset> Unsets a variable.

<cset> Sets a variable to the contents of the tag.

<append> Appends a value to a variable.

<define> Defines new tags, container tags or defines.

<undefine> Undefines a previously defined tag, container
tag or define.

<insert> Inserts values from files, cookies, defines or vari-
ables.

<use> Reads tags, container tags and defines from a file or
package.

<formoutput> A tag for inserting variables into just about
any context.

<set> Main RXML parser

Sets a variable to a new value.

variable=variable The variable to set.

debug Provide debug messages in case the operation fails.
<set> will normally fail silently.

define=define Set the variable to the contents of this define.

expr=expression Set the variable to the result of a simple
mathematical expression. Operators that can be used are +, -
, *, /, % and |. Only numerical values can be used in the
expression.

eval=rxml expression Set the variable to the result of this
rxml expression.

from=variable Set the variable to the value of the named
variable.

other=variable Set the variable to the value of this other
variable. This is mostly useful from within output tags like
<sqloutput> where all columns from the SQL result will be
available as other variables.

value=string Set the variable to this value.

If none of the above attributes are specified, the variable
is unset. If debug is currently on, more specific debug infor-
mation is provided if the operation failed.

Example
<set variable=foo value="Hello World"> <insert
variable=foo>

Results in

<set variable=foo eval="<date>"> <insert vari-
able=foo>

Results in

<unset> Main RXML parser

Unsets a variable.

variable=variable Specifies which variable to unset.

Example
<set variable=foo value="Hello World"> set:
<insert variable=foo>
<unset variable=foo>
unset: <insert variable=foo>

Results in

<cset> </> Main RXML parser

Sets a variable to the contents of the tag.
14

Variable tags
variable=variable The variable to set.

Example
<cset variable=foo> Hello World </cset> <insert
variable=foo>

Results in

<append> Main RXML parser

Append a value to a variable.

variable=variable The variable to append to.

debug Provide debug messages in case the operation fails.
<append> will normally fail silently.

define=define Append the contents of this define.

from=variable Append the value of the named variable.

other=variable Append the value of this other variable. This
is mostly useful from within output tags like <sqloutput>

where all columns from the sql result will be available as
other variables.

value=string Append the variable to this value.

Example
<set variable=foo value="Hello"> <append vari-
able=foo value=" World"> <insert variable=foo>

Results in

<define> </> Main RXML parser

Defines new tags, container tags or defines.

container=name Define a new RXML container tag, or
override a previous definition.

name=name Sets the specified define. Can be inserted later
by the <insert> tag.

tag=name Defines a new RXML tag, or overrides a previous
definition.

default_attribute=value Set a default value for an attribute,
that will be used when the attribute is not specified when the
defined tag is used.

You can use a few special tokens in the definition of tags
and container tags:

#args# All attributes sent to the tag. Useful when defining a
new tag that is more or less only an alias for an old one.

&attribute; Inserts the value of that attribute.

Example
<define container=h1> <gtext fg=blue
#args#><contents></gtext> </define> <h1>Hello</
h1>

Results in

<define tag=test default_foo=foo
default_bar=bar> The test tag: Testing testing.
Foo is &foo;, bar is &bar; </define> <test
foo=Hello bar=World>
<test foo=Hello>

Results in

<undefine> Main RXML parser

Removes a previously defined tag, container tag or define.

name Undefine this define.

tag Undefine this tag.

container Undefine this container tag.

Example
<define container=h1> <gtext><contents></gtext>
</define> <h1>Hello</h1> <undefine con-
tainer=h1> <h1>World</h1>

Results in

<insert> Main RXML parser

Inserts values from files, cookies, defines or variables. If used
to insert cookies or variables <insert> will quote before
inserting, to make it impossible to insert dangerous RXML
tags.

cookie=cookie Inserts the value of the cookie.

cookies=full Inserts the value of all cookies. With the
optional argument full, the insertion will be more verbose.

encode=none html Determines what quoting method
should be when inserting cookies or variables. Default is
html, which means that <, > and & will be quoted, to make
sure you can't insert RXML tags. If you choose none nothing
will be quoted. It will be possible to insert dangerous RXML
tags so you must be of what your variables contain.
15

Web Site Creator
define=name Inserts this define, which must have been
defined by the <define> tag before it is used. The define
can be done in another file, if you have inserted the file.

file=path Inserts the file. This file will then be fetched just as
if someone had tried to fetch it through an HTTP request.
This makes it possible to include things like the result of
Pike or CGI scripts.

If path does not begin with /, it is assumed to be a URL
relative to the directory containing the page with the
<insert> tag. Note that included files will be parsed if they
are named with an extension the main RXML parser han-
dles. This might cause unexpected behavior. For example, it
will not be possible to share any macros defined by the
<define> tags.

If you want to have a file with often used macros you
should name it with an extension that won't be parsed. For
example, .txt.

fromword=toword Replaces fromword with toword in the
macro or file, before insering it. Note that only lower case
character sequences can be replaced.

nocache Don't cache results when inserting files, but
always fetch the file.

variable=variable Insert the variable.

Example
<define name=foo>This is a foo</define> <insert
name=foo>
<insert name=foo foo=cat>

<insert name=foo a=some foo=cats " is"="
are" his=here>

Results in

<use> Main RXML module

Reads tags, container tags and defines from a file or package.

file=path Reads all tags and container tags and defines from
the file.

This file will be fetched just as if someone had tried to
fetch it with an HTTP request. This makes it possible to use
Pike script results and other dynamic documents. Note,
however, that the results of the parsing are heavily cached for
performance reasons. If you do not want this cache, use
<insert file=... nocache> instead.

package=name Reads all tags, container tags and defines
from the given package. Packages are files located in local/

rxml_packages/.
By default, the package gtext_headers is available, that

replaces normal headers with graphical headers. It redefines
the h1, h2, h3, h4, h5 and h6 container tags.

The <use> tag is much faster than the <include>, since
the parsed definitions is cached.

Example
<use package=gtext_headers> <h1>Hello World</
h1>

Results in

<formoutput> </> Main RXML parser

A tag for inserting variables into just about any context. By
default anything within #'s will be interpreted as a variable.
Thus #name# will be replaced by the value of the variable
name. ## will be replaced by a #.

By default, the variable will be HTML quoted, that is, <
will be inserted as < > as > and & as &. However,
there are instances when that is not what you want, for
example, when inserting variables into SQL queries. There-
fore, the quoting can be controlled by #variable :
quote=scheme#. The different quoting schemes are:

none No quoting. This is dangerous and should never be
used unless you have total control over the contents of the
variable. If the variable contains an RXML tag, the tag will
be parsed.

html The default quoting, for inserting into regular HTML
or RXML.

dtag For inserting into HTML or RXML attributes that
are quoted with ". For example <img src="/base/

#image#">.

stag For inserting into HTML or RXML attributes that are
quoted with '. For example .

url For inserting variables into URLs.

pike For inserting into Pike strings, for use with the <pike>
tag.

js, javascript For inserting into Javascript strings.

mysql For inserting into MySQL SQL queries.

sql, oracle For inserting into SQL queries.

Attributes
quote Select the string used for quoting the variable,
default is #.

encode Set the default quoting scheme for all variables
inserted with this tag.

Example
<set variable=foo value="World"> <formoutput
quote=$> Hello foo </formoutput>
16

Variable tags
Results in
17

Web Site Creator
URL tags

URL tags are tags that somehow use or manipulate the URL
or HTTP headers. Among other things they manipulate;

prestate options Prestate options are a way to present
options in the URL, that will be persistent for a user over
several pages. A prestate for the options txt and en would
be stored as http://www.roxen.com/(en,txt)/my.page
in the URL. If you use prestate options you must only use
relative URLs in your links.

cookies Cookies are a way for a web site to store a small
amount of information in the users' browsers. It is a much
better way than prestates to handle information that should
be persistent for a user over several pages.

authentification HTTP can be used to transmit a user
name and a password through HTTP.

expire It is possible to tell the browser, and any proxy on the
way to it, how long it is to cache a page.

The URL tags are:

<apre> Adds or removes prestate options.

<aconf> Adds or removes config options.

<set_cookie> Sets a cookie that will be stored by the user's
browser.

<remove_cookie> Removes a cookie.

<auth-required> Adds an HTTP auth required header and
return code, that will force the user to supply a login name
and password.

<expire_time> Sets the expire-time for the document.

<header> Adds an HTTP header to the result from page.

<redirect> Adds an HTTP redirect header and return code
to the response from the page.

<return> Changes the HTTP return code for this page.

<killframe> Prevents your page from being placed in a
frame,

<apre> </> Main RXML parser

Adds or removes prestate options.
Prestate options are simple true/false flags that are added

to the URL of the page. Use <if prestate=...> to test for
the presence of a prestate. <apre> works just like a container tag, but the href attribute can be omit-
ted in which case the current page is used.

option Add the prestate option.

-option Remove the prestate option.

href Make the generated link point to this URL. The URL
must be local to this web site.

Example
<apre foo>Add the option</apre>
<apre -
foo>Remove the option</apre> <p><if
prestate=foo> The option is set. </if> <else>
The option is not set. </else>

<aconf> </> Main RXML parser

Adds or removes config options.
Config options are simple toggles that are stored in the

cookie roxen-config. This ensures that they are persistent for
that user, the same user will have the same config options
even if he returns to the site another day. If cookies cannot
be used, prestate variables are used instead.

Use <if config=...> to test for the presence of a con-
fig option. <aconf> works just like the con-
tainer tag, but if no href attribute is specified, the current
page is used.

Example
<aconf +foo>Add the option</aconf>
<aconf -
foo>Remove the option</aconf> <p><if con-
fig=foo> The option is set. </if> <else> The
option is not set. </else>

<set_cookie> Main RXML parser

Sets a cookie that will be stored by the user's browser. This is
a simple and effective way of storing data that is local to the
user. The cookie will be persistent, the next time the user vis-
its the site, she will bring the cookie with her.

name=string The name of the cookie.

value=string The value the cookie will be set to.

persistent Keep the cookie for two years.

hours=number Add this number of hours to the time the
cookie is kept.

minutes=number Add this number of minutes to the time
the cookie is kept.

seconds=number Add this number of seconds to the time
the cookie is kept.

days=number Add this number of days to the time the
cookie is kept.
18

URL tags
weeks=number Add this number of weeks to the time the
cookie is kept.

months=number Add this number of months to the time
the cookie is kept.

years=number Add this number of years to the time the
cookie is kept.

It is not possible to set the date beyond year 2038. By
default the cookie will be kept until the year 2038.

Note that the change of a cookie will not take effect until
the next page load. Therefore, a reload will be needed to see
the effect of the example.

Example
<apre foo>Set the cookie</apre>
<apre -
foo>Remove the cookie</apre> <if
prestate=foo><set_cookie name=foo value="Hello
World"></if> <else><remove_cookie name=foo></
else> <p><insert cookie=foo>

<remove_cookie> Main RXML parser

Removes a cookie.

name Name of the cookie to remove.

Note that removing a cookie won't take effect until the
next page load. Therefore, a reload will be needed to see the
effect of the example.

Example
<apre foo>Set the cookie</apre>
<apre -
foo>Remove the cookie</apre> <if
prestate=foo><set_cookie name=foo value="Hello
World"></if> <else><remove_cookie name=foo></
else> <p><insert cookie=foo>

<auth-required> Main RXML parser

Adds an HTTP auth required header and return code, that
will force the user to supply a login name and password. This
tag is needed when using access control in RXML in order
for the user to be prompted to login.

Example
<apre foo> Try it. </apre> <if prestate=foo>
<auth-required> </if>

Results in

<expire-time> Main RXML parser

Sets the expire-time for the document. Caches along the way
to the user are only allowed to cache the page for this
amount of time.

hours=number Add this number of hours to the expire
time.

minutes=number Add this number of minutes to the expire
time.

seconds=number Add this number of seconds to the expire
time.

days=number Add this number of days to the expire time.

months=number Add this number of months to the expire
time.

years=number Add this number of years to the expire time.

Bugs: it is not possible to set the date beyond the year
2038.

You can check our example by asking your browser about
the Page Info.

Example
<expire-time hours=5>

<header> Main RXML parser

Adds an HTTP header to the result from page.
See the Appendix for a list of HTTP headers.

name=string The name of the header.

value=string The value of the header.

Example
<apre foo>Try it</apre> <if prestate=foo>
<header name=Location value=http://
www.roxen.com/> <return code=301> </if>

<redirect> Main RXML parser

Adds an HTTP redirect header and return code to the
response from this page.

to=URL Redirect to this URL.

Example
<apre foo>Try it</apre> <if prestate=foo>
<redirect to="http://www.roxen.com/"> </if>

<return> Main RXML parser

Changes the HTTP return code for this page.
See the Appendix for a list of HTTP return codes.

code The return code to set.
19

Web Site Creator
Example
<apre foo>Try it</apre> <if prestate=foo>
<header name=Location value=http://
www.roxen.com/> <return code=301> </if>

<killframe> Killframe tag

Prevents your page from being placed in a frame, by adding
some JavaScript code.

As an added bonus index.html will be removed from
the end of the URL, as shown in the Location field in your
browser.

Example
<killframe>
20

If tags
If tags

If-tags make it possible to make dynamic pages that show
different content based on conditions. Authenticated users
can get confidential information and pages can be optimized
for all browsers. They also makes it possible to program web
application in RXML, without using any programming lan-
guage.

The if tags are:

<if> Container tag used to conditionally show its contents.

<else> Shows the contents if the previous <if> tag didn't,
or if preceded by a <false>.

<elseif> Same as the <if>, but it will only evaluate if the
previous <if> tag returned false.

<true> An internal tag used to set the return value of <if>
tags.

<false> An internal tag used to set the return value of <if>
tags.

<if> </> Main RXML parser

<if> is used to conditionally show its contents. <else>,
<elif> or <elseif> can be used to suggest alternative con-
tent.

It is possible to use glob patterns in almost all attributes,
where * means match zero or more characters while ?
matches one character. * Thus t*f?? will match trainfoo

as well as * tfoo but not trainfork or tfo.

accept=type1[,type2,...] Returns true is the browser accept
certain content types as specified by it's Accept-header, for
example image/jpeg or text/html. If browser states that it
accepts */* that is not taken in to account as this is always
untrue.

config=name Has the config been set by use of the
<aconf> tag?

cookie=name[is value] Does the cookie exist and if value is
given, does it contain the value value?

date=yyyymmdd Is the date yyyymmdd? The attributes
before, after and inclusive modifies the behavior.

defined=define Is the define define defined?

domain=pattern[,pattern...] Does the user's computer's
DNS name match any of the patterns? Note that domain
names are resolved asynchronously, and the the first time
someone accesses a page, the domain name will probably not
have been resolved.

eval=RXML expression Returns true if RXML expression
returns a string that evaluates to true if casted to an integer
in Pike, i.e. the string begins with 1-9 or a number of zeroes
followed by 1-7 (octal greater than zero).

exists=path Returns true if the file path exists. If path does
not begin with /, it is assumed to be a URL relative to the
directory containing the page with the <if>-statement.

filename=filepattern1[,filepattern2,...] Returns true if the
current page is among the listed filepatterns.

host=pattern[,pattern...] Does the users computers IP
address match any of the patterns?

language=language1[,lang2,...] Does the client prefer one
of the languages listed, as specified by the Accept-Language
header?

match=string[is pattern[,pattern,...]] Does the string match
one of the patterns?

name=pattern[,pattern...] Does the full name of the browser
match any of the patterns?

prestate=option1[,option2, ...] Are all of the specified
prestate options present in the URL?

referrer=[=pattern[,pattern,...]] Does the referrer header
match any of the patterns?

supports=feature Does the browser support this feature?
See the Supports classes page page for a list of all available
features.

time=ttmm Is the date ttmm? The attributes before, after
and inclusive modifies the behavior.

user=name[,name,...]|any Has the user been authenticated
as one of these users? If any is given as argument, any
authenticated user will do.

variable=name[is pattern] Does the variable exist and,
optionally, does it's content match the pattern?

Modifier Attributes
after Used together with the date attribute.

and If several conditional attributes are given all must be
true for the contents to be shown. This is the default behav-
ior. The and attribute cannot be compined with the or
attribute.

before Used together with the date attribute.

file=path Used together with the user attribute. An external
file will be used to authenticate the user, rather than the cur-
21

Web Site Creator
rent Authentication module. The file should have the follow-
ing format:

user name : encrypted password
user name : encrypted password

Unless the wwwfile attribute is given the path is a path in the
computers real file system, rather than Challenger's virtual
file system.

group=group, groupfile path Used together with the user
attribute to check if the current user is a member of the
group according the the groupfile. The groupfile is of the
following format:

group : user1, user2, user3
group : user4

inclusive Used together with the date and before or after
attributes. The contents will also be shown if the date is the
current date.

wwwfile Used together with the file attribute to indicate
what Challenger's virtual file system should be used to find
the password file. This might be a security hazard, since any-
one will be able to read the password file.

not Inverts the results of all tests.

or If several conditional attributes are given, only one of
them has to be true for the contents to be shown. The or
attribute cannot be compined with the and attribute.

Complex expressions
You might be tempted to write expressions like:

<if variable="foo is bar"
 or variable="bar isfoo">
Something
</if>

This will not work, as you can only use an attribute once.
Another common problem is a misconception of how the

and, or and not attributes work.

<if user=foo
 or not domain="*.foobar.com">
...
</if>

will not work since the not attribute negates the whole tag,
not just the domain attribute.

Example
<if supports=tables> Your browser supports
tables. </if>

Results in

<if user=any> You are logged in. </if> <else>
You are not logged in. </else>

Results in

<if date=20000101 before> The year 2000 is yet
to come. </if>

Results in

<else> </> Main RXML parser

Show the contents if the previous <if> tag didn't, or if there
was a <false> above. The result is undefined if there has
been no <if>, <true> or <false> tag above.

Example
<false> <else> Show this. </else>

Results in

<elseif> </> Main RXML parser

Same as the <if>, but it will only evaluate if the previous
<if> tag returned false.

<true> Main RXML parser

An internal tag used to set the return value of <if> tags. It
will ensure that the next <else> tag will not show its con-
tents. It can be useful if you are writing your own <if>

lookalike tag.

<false> Main RXML parser

Internal tag used to set the return value of <if> tags. It will
ensure that the next <else> tag will show its contents. It can
be useful if you are writing your own <if> lookalike tag.
22

Graphics tags
Graphics tags

Good looking graphics are an important part of the layout of
web pages. But creating graphics can also be very time con-
suming, especially if it involves creating the same type of
headings, only with different text.

Therefore, Challenger features graphic tags that create
images. They can be used to draw analog clocks and graphi-
cal headings as well as diagrams.

File Formats
Some of the tags take images as attributes. For example, to
use as background. The images can be in GIF, JPEG, PNM
or PNG format.

Color Attributes
Color attributes can be specified in one of the following
ways:

name For example black or darkred.

#RGB value The color is specified as a hexadecimal-digits,
#RRGGBB. For example, #ffdead or #00ff00.

@HSV value The color is specified with the syntax @h,s,v

where h is the hue specified as degrees (0 to 359), s is the sat-
uration specified as a percentage and v the value also speci-
fied as a percentage. For example, @150,70,70.

%CMTK value The color is specified with the syntax
%c,m,t,k where all the values are percentages. For example,
%10,20,30,40.

The graphics tags are:

<gtext> Renders a GIF image of the contents.

<diagram> Draws draw pie, bar, or line charts as well as
graphs.

<gclock> Draws an analogue clock that will always show
the right time.

<pimage> A Pike tag optimized for creating images or GIF
animations.

<imgs> Works like an tag where the server automati-
cally sets the width and height attributes.

<config_tablist> Generates a list of tabs, like the one in the
configuration interface.

<gtext> </> Graphics text

Renders a GIF image of the contents.
Note: If the background and text colors are not set in the

<body> tag of the page, the bg and fg attributes must be set,

otherwise the <gtext> tag will only render a "Please reload
this page" message.

alpha=path Use the specified image as an alpha channel,
together with the background attribute.

alt=string Sets the alt attribute of the generated tag.
By default the alt attribute will be set to the contents of the
<gtext> tag.

background=path Specifies the image to use as back-
ground.

bevel=width Draws a bevel box.

pressed Inverts the direction of the bevel box, to make it
look like a button that is pressed down.

bg=color Tells the <gtext> tag what the background color
of the page is. This is used for anti-alias purposes. The mod-
ule can be configured to try to find out this by itself, by pars-
ing at appropriate HTML tags.

black Use a black, or heavy, version of the font, if available.

bold Use a bold version of the font, if available.

border=width, color Draws a border around the text of the
specified width and color.

fadein=blur, steps, delay, initialdelay Generates an animated
GIF file of a fade-in effect.

fg=color Sets the color or the rendered text. The module can
be configured to try to find out an appropriate color by pars-
ing HTML tags.

fs Apply floyd-steinberg dithering to the resulting image.

fuzz=color Apply a glow effect.

ghost=dist, blur, color Apply a ghost effect. Cannot be used
together with shadow or magic.

glow=color Apply a glowing outline around the text.

href=URL Link the image to the specified URL. The link
color of the document will be used as the default foreground
rather than the foreground color.

italic Use an italic version of the font, if available.

light Use a light version of the font, if available.

magic=message Used together with the href attribute to gen-
erate a JavaScript that will highlight the image when the
mouse is moved over it.

magic_attribute=value Same as for any <gtext> attribute,
except for the highlighted image.

magicbg=color|path Same as the background attribute,
except for the highlighted image.
23

Web Site Creator
maxlen=number Sets the maximum length of the text that
will be rendered into an image, by default 300.

mirrortile Tiles the background and foreground images
around x-axis and y-axis for odd frames, creating seamless
textures.

move=x, y Moves the text relative to the upper left corner of
the background image. This will not change the size of the
image.

nfont=font Use this font. If no font is specified, the define
nfont will be used, or the default font, if there is no define.

notrans By default, the background of the image is set as a
transparent color. This option overrides that behavior.

opaque=percentage Generate text with this amount of
opaqueness. 100% is default.

quant=number Use this number of colors in the generated
image. For GIF images, fewer colors implies smaller images
but also aliasing effects. It is advisable to use powers of 2 to
optimize the palette allocation.

rescale Rescale the background to fill the whole image.

rotate=angle Rotates the image this number of degrees
counter-clockwise.

scale=float Scale the font this much.

scolor=color Use this color for the shadow. Used with the
shadow attribute.

scroll=width, steps, delay Generate an animated GIF image
of the text scrolling.

shadow=intensity, distance Draw a drop-shadow with the
specified intensity and distance. The intensity is specified as
a percentage.

size=width, height Set the size of the image.

spacing=number Add space around the text.

split Generate a separate GIF image out of each word. This
will allow the browser to word-wrap the text, but will disable
certain attributes like magic.

split=character Split the string also at each occurrence of the
character.

talign=left eight center Adjust the alignment of the text.

textbelow=color Place the text in a colored box.

textbox=opaque, color Draw a box with an opaque value
below the text of the specified color.

texture=path Uses the specified images as a field texture.

tile Tiles the background and foreground images if they are
smaller than the actual image.

turbulence=frequency, color; frequency, color; frequency, color
Apply a turbulence effect.

verbatim Allows the gtext parser to not be typographically
correct.

xpad=percentage Increases padding between characters.

xsize=number Sets the width.

xspacing=number Sets the horizontal spacing.

ysize=number Sets the height.

yspacing=number Sets the vertical spacing.

Example
<gtext>The time is <date time></gtext>

<gtext href=http://www.roxen.com/
magic>Roxen Platform</gtext>

Results in

<diagram> </> Business Graphics

The <diagram> container tag is used to draw pie, bar, or
line charts as well as graphs. It is quite complex with six
internal container tags.

Internal Tags
<data> The data the diagram is to visualize, in tabular form.

<colors> The colors for different pie slices, bars or lines.

<legend> A separate legend with description of the differ-
ent pie slices, bars or lines.

<xaxis> Used for specifying the quantity and unit of the x-
axis, as well as its scale, in a graph.

<yaxis> Used for specifying the quantity and unit of the x-
axis, as well as its scale, in a graph or line chart.

<xnames> Separate tag that can be used to give names to
put along the pie slices or under the bars. The names are
usually part of the data.

Pie
<diagram type=pie width=200 height=200
name='Population' tonedbox='lightblue,light-
blue,white,white'> <data separator=,>
5305048,5137269,4399993,8865051 </data> <legend
separator=,> Denmark,Finland,Norway,Sweden</
legend> </diagram>
24

Graphics tags
Results in

Bar
<diagram type=bar width=200 height=250
name='Population' horgrid tonedbox='light-
blue,lightblue,white,white'> <data xnamesvert
xnames separator=,> Denmark,Finland,Norway,Swe-
den 5305048,5137269,4399993,8865051</data> </
diagram>

Results in

<diagram type=bar width=200 height=250
name='Age structure' horgrid tonedbox='light-
blue,lightblue,white,white'> <data xnamesvert
xnames form=column separator=,> Den-
mark,951175,3556339,797534 Fin-
land,966593,3424107,746569
Norway,857952,2846030,696011 Swe-
den,1654180,5660410,1550461</data> <legend sep-
arator=,> 0-14,15-64,65- </legend> </diagram>

Results in

Sumbar
<diagram type=sumbar width=200 height=250
name='Land Use' horgrid tonedbox='light-
blue,lightblue,white,white'> <data xnamesvert
xnames form=column separator=,> Den-
mark,27300,4200,10500 Fin-
land,24400,231800,48800
Norway,9240,83160,215600 Swe-
den,32880,279480,102750</data> <legend separa-

tor=,> Arable,Forests,Other </legend> <yaxis
quantity=area> <yaxis unit=km^2> </diagram>

Results in

Normalized Sumbar
<diagram type=normsumbar width=200 height=250
name='Land Use' horgrid tonedbox='light-
blue,lightblue,white,white'> <data xnamesvert
xnames form=column separator=,> Den-
mark,27300,4200,10500 Fin-
land,24400,231800,48800
Norway,9240,83160,215600 Swe-
den,32880,279480,102750 </data> <legend separa-
tor=,> Arable,Forests,Other </legend> <yaxis
quantity=%> </diagram>

Results in

Line Chart
<diagram type=line width=200 height=250
name='Exchange Rates' horgrid tonedbox='light-
blue,lightblue,white,white'> <data form=row
separator=, xnamesvert xnames>
1992,1993,1994,1995,1996
0.166,0.154,0.157,0.179,0.172
0.223,0.175,0.191,0.229,0.218
0.161,0.141,0.142,0.158,0.155
0.172,0.128,0.130,0.149,0.140 </data> <yaxis
start=0.09 stop=0.25> <legend separator=,> Dan-
ish kroner (DKr), Markkaa (FMk), Norwegian kro-
nor (NKr), Swedish kronor (SKr) </legend>
<xaxis quantity=year> <yaxis quantity=US$> </
diagram>
25

Web Site Creator
Results in

Graph
<diagram type=graph width=200 height=300
name='Simple Functions' horgrid toned-
box='lightblue,lightblue,white,white'> <colors
separator=" ">#60b0ff darkred</colors> <data
separator=,><pike> float c; for (c=-2.0; c <
2.0; c+=0.1) output("%f,%f,", c, c * c); out-
put("%f,%f", 2.0, 2.0 * 2.0); return flush();
</pike> <pike> float c; for (c=-2.0; c < 2.0;
c+=0.1) output("%f,%f,", c, c * c * c); out-
put("%f", 2.0, 2.0 * 2.0 * 2.0); return
flush(); </pike></data> <axis start=-2.1
stop=2.1> <axis start=-6.1 stop=6.1> <legend
separator=,> x^2,x^3 </legend> </diagram>

Results in

3d=number Draws a pie-chart on top of a cylinder, takes the
height of the cylinder as argument.

background=path Use the image as background.

bgcolor=color Set the background color to use for anti-
aliasing.

center=number Centers a pie chart around that slice.

eng Write numbers in engineering fashion, i.e like 1.2M.

font=font Use this font. Can be overridden in the <leg-

end>, <xaxis>, <yaxis> and <names> tags.

fontsize=number Height of the text.

height=number Height of the diagram. Will not have effect
below 100.

horgrid Draw a horizontal grid.

labelcolor=color Set the color for the labels of the axis.

legendfontsize=number Height of the legend text.

name=string Write a name at the top of the diagram.

namecolor=color Set the color of the name, by default text-
color.

namefont=font Set the font for the name.

namesize=number Sets the height of the name, by default
fontsize.

neng As eng, but 0.1-1.0 is written as 0.xxx.

notrans Make bgcolor opaque.

rotate=degree Rotate a pie chart this much.

textcolor Set the color for all text.

tonedbox=color1,color2,color3,color4 Create a background
shading between the colors assigned to each of the four cor-
ners.

turn Turn the diagram 90 degrees.

type=sumbars normsum line bar pie graph The type of
the diagram.

vertgrid Draw vertical grid lines.

voidsep=string Change the string that means no such value,
by default "VOID".

width=number Set the width of the diagram.

xgridspace=number Set the space between two vertical grid
lines. The unit is the same as for the data.

ygridspace Set the space between two horizontal grid lines.
The unit is the same as for the data.

Regular arguments will be passed on to the gener-
ated tag.

<data>
form=column row How to interpret the tabular data, by
default row.

lineseparator=string Set the separator between rows, by
default newline. lineseparator.

noparse Do not parse the contents by the RXML parser,
before data extraction begins.

separator=string Set the separator between elements, by
default tab.

xnames Treat the first row or column as names for the data
to come. The name will be written along the pie slice or
under the bar.

xnamesvert Write the names vertically.
26

Graphics tags
<colors>
separator=string Set the separator between colors, by
default tab.

<legend>
separator=string Set the separator between legends, by
default tab.

<xaxis>, <yaxis>
start=float Limit the start of the diagram at this value. If set
to min the axis starts at the lowest value in the data.

stop=float Limit the end of the diagram at this value.

quantity=string Set the name of the quantity of this axis.

unit=string Set the name of the unit of this axis.

<xnames>
separator=string Set the separator between names, by
default tab.

orient=vert horiz How to write names, vertically or hori-
zontally.

<gclock> Pike Image Module

Draw an analog clock that will always show the right time
through use of GIF animations.

background_image=path Set the background image to
use.

delay=seconds Set the delay between the frames in the ani-
mation.

time_offset=seconds Add or subtract a number of seconds
to the actual time.

Example
<gclock>

Results in

<pimage> </> Pike Image Module

A <pike> tag optimized for creating images or GIF anima-
tions.

<imgs> Main RXML parser

Works like an tag where the server automatically sets
the width and height attributes. That way, the page will be
rendered faster by the browser while no information about
the image is hard-coded into the page. If the image changes
size, so will the width and height attributes. The server will
read the first bytes of the image file to determine its size.

<imgs> can determine this image dimensions of JPEG,
GIF and PNG images.

The <imgs> takes the same attributes as the tag.

Example
<source preparse> <imgs src="/internal-roxen-
err_1"> </source>

Results in

<config_tablist> </> Config tab-list

Generates a list of tabs, like the one in the configuration
interface.

The <config_tablist> container tag does not take any
attributes, but it must always contain one or more <tab>

container tags. The following attributes apply to the <tab>

tags.

alt=string Alternative text for the image. The default is to
use ascii-art to make it look like a tablist.

bgcolor=color Set the background color. Default is white.

border=number Set the width of the border of the image.
Default is zero.
27

Web Site Creator
selected Make this tab the selected tab.

Example
<config_tablist> <tab href="gtext.html">gtext</
tab> <tab selected="selected">config-tablist</
tab> <tab href="gclock.html">gclock</tab> </
config_tablist>

Results in
28

Database tags
Database tags

The database tags interact with SQL databases. They can be
used to create interactive graphical reports as well as com-
plete web applications.

The database tags are almost always combined with other
RXML tags. Together with the <diagram> tag they provide
real-time diagrams, with the <tablify> tag they provide
nice looking tables. Combined with the <wizard> tag they
make easy-to-use web applications.

Each database tag needs to know which database it
should connect to. This is specified by the host-attribute
which usually is a symbolic name for the database that the
administrator has configured in the SQL databases module.
It is also possible to specify the database host, user and pass-
word directly in the tags, but this is not recommended. See
the Database chapter in the Administrator's manual for the
syntax.

The database tags are:

<sqlquery> Executes an SQL query.

<sqltable> Creates an ASCII or HTML table with the
results from an SQL query.

<sqloutput> Insert the results of an SQL query into
HTML or RXML code.

<sqlquery> SQL

Executes an SQL query, but doesn't do anything with the
result. This is mostly used for SQL queries that change the
contents of the database, for example INSERT or UPDATE.

host=database Which database to connect to, usually a sym-
bolic name. If omitted the default database will be used.

query=SQL query The actual SQL-query.

quiet Do not show any errors in the page, in case the query
fails.

parse If specified, the query will be parsed by the RXML
parser. Useful if you wish to dynamically build the query.

Example
<apre foo>Reset the database</apre> <if
prestate=foo> <sqlquery host=test query="DELETE
from test"> </if>

<sqltable> SQL

Creates an HTML or ASCII table from the results of an
SQL query.

ascii Create an ASCII table rather than a HTML table.
Useful for interacting with the <diagram> and <tablify>

tags.

host=database Which database to connect to, usually a sym-
bolic name. If omitted the default database will be used.

query The actual SQL-query.

quiet Do not show any errors in the page, in case the query
fails.

parse If specified, the query will be parsed by the RXML
parser. Useful if you wish to dynamically build the query.

Example
<tablify nice="nice" preparse="preparse">Coun-
tryPopulation <sqltable ascii host=test
query="SELECT country, population FROM coun-
tries ORDER BY country"> </tablify>

<sqloutput> </> SQL

Insert the results of aa SQL query into HTML or RXML.
<sqloutput> works like all output tags. By default anything
within #'s will be interpreted as a variable. Thus #column#
will be replaced by the column value. ## will be replaced by
a #. The inserted SQL results will by default be HTML
quoted, < will for example be quoted to <. See the for-
moutput page for more information about quoting.

The <sqloutput> tag will copy its contents and replace
the columns for each row in the result of the query. If the
result is empty, the <sqloutput> will not return anything.

Within the <sqloutput> the column values can be
accessed as other variables. This is useful for transferring the
result to normal RXML variables.

host=database Which database to connect to, usually a sym-
bolic name. If omitted the default database will be used.

query=SQL query The actual SQL-query.

quiet Do not show any errors in the page, in case the query
fails.

parse If specified, the query will be parsed by the RXML
parser. Useful if you wish to dynamically build the query.

Example
<table > <tr> <th>Country</th> <th>Population</
th> </tr> <sqloutput host=test query="SELECT
country, population FROM countries ORDER BY
country"> <tr> <td>#country#</td> <td>#popula-
tion#</td> </tr> </sqloutput> </table>

<sqloutput host=test query="SELECT population
FROM countries WHERE country='Sweden'"> <set
29

Web Site Creator
variable=swepop other=population> </sqloutput>
The population of Sweden is <insert vari-
able=swepop>.
30

LDAP
LDAP

The LDAP directory tags interact with LDAP directories as
well as LDAP accessible directories like Novell NDS or
Microsoft Active Directory.

The directory tags can be combined with other RXML
tags.

Each directory operation tag needs to know which direc-
tory it should connect to. This is specified by the host,
user, password and basedn-attribute.

<ldap> LDAP module

Executes a LDAP operation, but doesn't do anything with
the result. <ldap> is mostly used for LDAP operation that
change the contents of the directory, for example add or
modify.

host=hostname Host name of server on which directory
server will connect to. If omitted the default host name will
be used.

name=user name User name for connection to the directory
server. If omitted the default user name will be used.

password=password User password for connection to the
directory server. If omitted the default will be used.

dn=distinguished name Distinguished name of object.
Required.

op=add delete modify replace The actual LDAP opera-
tion. Required.

Note that op=modify will change only the attributes
given by the attr attribute.

attr=attribute/value list The actual values of attributes.
The syntax: (attribute_name1:[('attribute_value1'[, ...

])][,attribute_name2 ...]
for example:

(sn:'Zappa'),(mail:'hello@nowhere.org','athell@pandemo-
nium.com')

quiet In case of the operation fails, no error messages will
show on the page. Error description can be returned by
<ldapelse>.

parser If specified, the query will be parsed by the RXML
parser. This is useful if the operation is to be built dynami-
cally.

Example
<apre foo>Delete the user</apre> <if
prestate=foo> <ldap host=test dn="uid=bill,
o=M$, c=US" op="delete"> </if>

<ldapoutput> </> LDAP module

Insert the results of a LDAP search into HTML or RXML.
<ldapoutput> works like output tags. By default anything
within #'s will be interpreted as a variable. Thus
#attribute_name# will be replaced by the attribute value. ##
will be replaced by a #. See formoutput page for more infor-
mation about quoting.

As the attribute can contains multiple values the
#attribute_name# expression returns first value only. Sec-
ond, third ... values can be specified by suffix before # (i.e
second email value is written as #mail:2#). Obviously this
isn't more often usable. Better solution is the subcontainer
<ldapfor>, see bellow.

The <ldapoutput> tag will copy its contents and replace
the named attribute for each row in the result. If the result is
empty, the <ldapoutput> will not return anything.

host=hostname Hostname of server on which directory
server will connect to. If omitted the default hostname will
be used.

name=user name User name for connection to the directory
server. If omitted the default user name will be used.

password=user password User password for connection to
the directory server. If omitted the default will be used.

basedn=base DN Base DN of an object where is started
search of directory. Required.

scope=base onelevel subtree

name=attribute The attribute name used for sorting out-
put.

Note: Only one attribute name can be used.

quiet Do not show any errors in the page, in case the query
fails.

parse If specified, the content will be parsed by the RXML
parser.

Example
<table > <tr> <th>Name</th> <th>Email</th>
<th>Home page</th> </tr> <ldapoutput host=test
based="c=US" filter="(&(objectclass=per-
son)(mail=*))"> <tr> <td>#givenname# #sn#</td>
<td>#mail#</td> <td>#labeleduri#</td> </tr> </
ldapoutput> </table>

<ldapfor> </> LDAP module

Repeats the content for a multiple attribute values.
The <ldapfor> tag only works within the

<ldapoutput> container tag!.
31

Web Site Creator
By default anything within #'s will be interpreted as a
variable. Thus #attribute_name# will be replaced by the
attribute value. ## will be replaced by a #. See formoutput
page for more information about quoting.

attr=attribute name The attribute name. Required.

index=initial value The initial value for index. If omitted
the index=1 will be used.

step=increment The increment for index. If omitted the
step=1 will be used.

max=value The restriction for returned values. If omitted
all values will be returned.

Example
<table > <th>Name</th> <th>Phone</th> <ldapout-
put host=test basedn="c=US" scope="subtree"
filter="(telephonenumber=*)"> <tr> <td>#given-
name# #sn#</td> <td>#telephonenumber:1# <ldap-
for attr=telephonenumber index=2> ,
#telephonenumber# </ldapfor></td> </tr> </
ldapoutput> </table>
32

Programming tags
Programming tags

Programming tags are tags that can be used for advanced
RXML such as making web applications. There are also tags
of interest to module programmers. For anyone interested in
combining programming with RXML there is the <pike>

tag that lets you put pike code into RXML pages.
The programming tags are:

<catch> Prints the enclosed text or that of a <throw> tag.

<throw> Throws a text to be catched by <catch>.

<cgi> Executes a CGI script.

<crypt> Encrypts the contents as a Unix style password.

<debug> Sets debugging on or off.

<default> Used to set default values for form elements.

<for> Makes it possible to create loops in RXML.

<gauge> Measures how much CPU time is takes to run its
contents through the RXML parser.

<nooutput> The contents will not be sent through to the
page. Side effects, for example sending queries to databases,
will take effect.

<noparse> The contents of this container tag will not be
RXML parsed.

<pike> Runs the content as Pike code.

<random> Randomly chooses a message from its contents.

<realfile> Prints the path to the file containing the page in
the computers file system, rather than Challenger's virtual
file system.

<scope> Creates a new scope for RXML variables.

<sed> Emulates a subset of sed operations in RXML.

<strlen> Returns the length of the contents.

<trace> Makes a trace report about how the contents is
parsed by the RXML parser.

<vfs> Prints the mountpoint of the filesystem module that
handles the page.

<wizard> Generates wizard-like user interfaces.

<catch> </> Main RXML parser

This tag does normally just pass along it's contents. How-
ever, in case there are an error in the RXML evaluation of the
contents, or a <throw> tag is evaluated, only the error mes-
sages will be returned.

Example
<catch> <h1>Hello World</h1> <throw>Error
dude.</throw> </catch>

Results in

<throw> </> Main RXML parser

This tag throws an exception, with the enclosed text as the
error message. The RXML parsing will stop at the <throw>

tag.
Has a close relation to the <catch> tag.

Example
<catch> <set variable=foo value=Hi>
<throw>Error dude.</throw> <set variable=foo
value=Bye> </catch> <p><insert variable=foo>

Results in

<cgi> CGI executable support

Executes a CGI script, any attributes is forwarded from the
tag to the CGI script. The same can be achieved by the
<insert> tag or SSI <!-- #exec -->, but the <cgi> tag
has a nicer syntax.

script=path The CGI script to invoke.

attribute=value This attribute will always be sent to the CGI
script, as a form variable. It cannot be overridden.

default-attribute=value This attribute will be sent to the
CGI script, unless a form variable exists with the same name.

<crypt> Main RXML parser

Encrypts the contents as a Unix style password. Useful when
combined with services that use such passwords.

Unix style passwords are one-way encrypted, to prevent
the actual clear-text password from being stored anywhere.
When a login attempt is made, the password supplied is also
encrypted and then compared to the stored encrypted pass-
word.

Example
<wizard name="Password"> <page>Enter your pass-
word: <var name=password type=password size=10>
</page> <page>Your encrypted password is
33

Web Site Creator
<tt><crypt><insert var=password></crypt></tt>.
</page> </wizard>

Results in

<debug> Main RXML parser

Sets debugging on or off. When debugging is on many
RXML tags will output more detailed error messages. It is
equivalent to giving the debug attributes to those tags.

on Enables debug mode.

off Disables debug mode.

Example
With debug:
<debug on> <append variable=foo
from=bar> <p>Without debug:
<debug off>
<append variable=foo from=bar>

Results in

<default> Main RXML parser

Makes it easier to give default values to <select> or
<checkbox> form elements.

The <default> container tag is placed around the form
element it should give a default value.

This tag is especially useful in combination with database
tags.

value=string The value to set.

name=string Only affect form element with this name.

Example
<form> <default value=2 name=number> <select
name=number> <option value="1">One <option
value="2">Two <option value="3">Three </select>
</default> </form>

Results in

<for> </> Main RXML parser

Makes it possible to create loops in RXML.

from=number Initial value of the loop variable.

step=number How much to increment the variable per loop
iteration. By default one.

to=number How much the loop variable should be incre-
mented to.

variable=name Name of the loop variable.

Example
<for variable=i from=1 to=10> <formoutput>
<number num=#i#> </formoutput> </for>

Results in

<gauge> Main RXML parser

<gauge> measures how much CPU time is takes to run its
contents through the RXML parser.

Example
<gauge> <for variable=i from=1 to=5> </for> </
gauge> <gauge> <for variable=i from=1 to=50> </
for> </gauge> <gauge> <for variable=i from=1
to=500> </for> </gauge>

Results in

<nooutput> </> Main RXML parser

The contents will not be sent through to the page. Side
effects, for example sending queries to databases, will take
effect.

Example
<set variable=foo value=Hi> <nooutput> <h1>Hi
dude</h1> <set variable=foo value=Bye> </noout-
put> <p><insert variable=foo>

Results in

<noparse> </> Main RXML parser

The contents of this container tag won't be RXML parsed.

Example
<use package=gtext_headers> <h1>Hello</h1>
<h1>World</h1>
34

Programming tags
Results in

<pike> </> Pike tag

Runs the content as Pike code. This tag is not always avail-
able, since it can be a security hazard.

Example
<gtext><pike> string a; a = "Hello"; a += "
World"; return a; </pike></gtext>

Results in

<random> Main RXML parser

Randomly chooses a message from its contents.

separator=string The separator used to separate the mes-
sages, by default newline.

Example
<cset preparse variable=num><random >1 2 3 4
5</random></cset> Your random number is <for-
moutput><number num=#num#></formoutput>.

Results in

<realfile> Main RXML parser

Prints the path to the file containing the page in the comput-
ers file system, rather than Challenger's virtual file system, or
unknown if it is impossible to determine.

Example
<realfile>

Results in

<scope> </> Main RXML parser

Creates a new scope for RXML variables. Variables can be
changed within the <scope> tag without having any effect
outside it.

extend Copy all variables from the outer scope.

Example
<set variable=foo value="World"> <scope>
<h1>Hello <insert variable=foo></h1> <set vari-
able=foo value="Duck"> </scope> <scope extend>
<h1>Hello <insert variable=foo></h1> </scope>

Results in

<sed> </> SED module

Emulates a subset of sed operations in RXML. (Sed is the
Unix "Stream EDitor" program which edits a stream of text
according to a set of instructions.)

append

chars

lines

prepend

split=<linesplit>

suppress

Syntax :

<sed [suppress] [lines] [chars]
[split=<linesplit>]
 [append] [prepend]>
 <e [rxml]>edit command</e>
 <raw>raw, unparsed data</raw>
 <rxml>data run in rxml parser before edited</
rxml>
 <source variable|cookie=name [rxml]>
 <destination variable|cookie=name>
 </sed>

edit commands supported:
 <firstline>,<lastline><edit command>
 ^^ numeral (17) ^^
 or relative (+17, -17)
 or a search regexp (/regexp/)
 or multiple (17/regexp//regexp/+2)

 D - delete first line in space
 G - insert hold space
 H - append current space to hold space
 P - print current data
 a<string> - insert
 c<string> - change current space
 d - delete current space
 h - copy current space to hold space
 i<string> - print string
 l - print current space
 p - print first line in data
 q - quit evaluating
 s/regexp/with/x - replace
 y/chars/chars/ - replace chars

 where line is numeral, first line==1

<strlen> </> Main RXML parser

Returns the length of the contents.
35

Web Site Creator
Example
<cset variable=num preparse> <strlen>Roxen</
strlen> </cset> Roxen is a <formoutput><number
num=#num#></formoutput> letter word.

Results in

<trace> Main RXML parser

Makes a trace report about how the contents are parsed by
the RXML parser.

Example
<trace> <nooutput> <for variable=i from=1 to=2>
<list-tags> </form> </nooutput> </trace>

Results in

<vfs> Main RXML parser

Prints the mountpoint of the filesystem module that handles
the page, or unknown if it could not be determined. This is
useful for creating pages or applications that are to be placed
anywhere on a site, but for some reason have to use absolute
paths.

Example
<set variable=path eval="<vfs>"> <formoutput>
Link to this page. </formoutput>

<wizard> </> Wizard generator

The <wizard> tag generates wizard-like user interfaces,
where the user is guided through several pages of controls. It
is very useful for making web applications in RXML.

The <wizard> tag must contain at least one <page>

container tag. The <page> tag can in turn contain <var>

tags or <cvar> container tags.

cancel=URL The URL to go to when the cancel button is
pressed.

cancel-label=string The text on the cancel button.

done=URL The URL to go to when the done button is
pressed.

name=string The title of the wizard.

next-label=string The text on the next button.

ok-label=string The text on the ok button.

page-label=text The text Page in the upper right corner.

previous-label=text The text on the previous button.

Attributes for <var> and <cvar>

cols=number Sets the number of columns.

default=value The default value.

name=name The name of the variable.

options=option1,option2,... Available for select or
select_multiple variables.

rows=number Sets the number of rows.

size=number Sets the size or the input form.

type=string password list text radio checkbox int float
color color-small font toggle select select_multiple The
variable type.

Example
<wizard done="wizard.html" name="Sample wizard"
ok-label="Done" cancel="wizard.html"> <page>
Message <var name=message size=30
value="Hello World"> <p><var name=color
type=color-small> </page> <page> <formoutput>
<gtext fg=#color#>#message#</gtext> </formout-
put> </page> </wizard>

Results in
36

SSI tags
SSI tags

SSI, Server Side Includes, are similar to RXML tags and have
the advantage of being a standard supported by many web
servers. It is thus possible to write pages using SSI that are
portable to other web servers.

The downside is that SSI is in no way as flexible or pow-
erful as RXML. The tags are placed within HTML com-
ments, which makes it impossible to combine different SSI
tags. However, it is possible to combine SSI tags with regular
RXML tags.

Challenger does not presently implement all the SSI
functionality that Apache supports.

The SSI tags are:

<!--#config--> used to configure how things should be
printed.

<--#echo--> Prints a variable from the server or request.

<--#exec--> Executes a CGI script or shell command.

<--#flastmod--> Prints the last modification date of the
specified file.

<--#fsize--> Prints the size of the specified file.

<--#include--> Insert a text from another file into the page.

<!--#config--> Main RXML parser

The config command is used to configure how things should
be printed.

errmsg=string Where msg is a message that is sent back to
the client if an error occurs while parsing the document.

sizefmt=bytes abbrev The value sets the format to be used
when displaying the size of a file. Bytes gives a count in bytes
while abbrev gives a count in KB or MB, as appropriate.

timefmt=value The value is a string to be used when print-
ing dates.

<!--#echo--> Main RXML parser

Prints a variable from the server or request.

var=sizefmt document name path translated document
uri date local date gmt query string unescaped last
modified server software server name gateway interface
server protocol server port request method remote host
remote addr auth type remote user http cookie cookie
http accept http user agent http referrer The variable to
print.

Example
We're using <gtext><!--#echo var="server soft-
ware"--></gtext>

Results in

<!--#exec--> Main RXML parser

Executes a CGI script or shell command. This command has
security implications and therefore, might not be available
on all web sites.

cgi=URL Path to the CGI script URL encoded. That is, a
character can be quoted by % followed by its hex value. The
CGI script is given the PATH_INFO and
QUERY_STRING of the original request from the client.
The variables available in <!--#echo> will be available to
the script in addition to the standard CGI environment. If
the script returns a Location header, then this will be trans-
lated into an HTML anchor.

cmd=path The server will execute the command using /

bin/sh. The variables available in <!--#echo> will be avail-
able to the script.

<!--#flastmod--> Main RXML parser

Prints the last modification date of the specified file.

file=path Path to the file.

virtual=URL Path to the file URL encoded. That is, a char-
acter can be quoted by % followed by its hex value.

<!--#fsize--> Main RXML parser

Prints the size of the specified file, subject to the sizefmt for-
mat specification.

file=path Path to the file.

virtual=URL Path to the file URL encoded. That is, a char-
acter can be quoted by % followed by its hex value.
37

Web Site Creator
<!--#include--> Main RXML parser

Insert a text from another file into the page.

file=path The file as a path relative to the directory contain-
ing the current page. It cannot contain ../, nor can it be an
absolute path.

virtual=URL The path to the file URL encoded. That is, a
character can be quoted by % followed by its hex value. The
path may contain ../ and may be absolute, i e starting with
a /
38

Image maps
Image maps

Image maps are used for images where you can click on dif-
ferent parts to go to different pages. Nowadays, this is usu-
ally handled in the browser, by client-side image maps. But it
is also possible to do this in the server. This is done through
.map files, where you define which page the user should be
brought to when clicking somewhere on the image.

The HTML code needed to use an image map is:

For server-side image maps to work the ISMAP image-maps
module must be enabled. The map file is a text file where
one clickable area is defined per line. The file will be scanned
one line at a time till a directive that includes the point the
user clicked is found. The possible directives are:

(X1,Y1)-(X2,Y2) URL (X1, Y1) are the coordinates of the
upper left corner of a rectangular area whose lower right cor-
ner has the coordinates (X2, Y2). Any point inside the rect-
angle will take the user to the URL.

(X,Y),R URL Any point inside the circle centered at (X,Y)
and with the radius R will take the user to the URL.

(X,Y) URL This specifies a single point and ties a URL to it.
If more than one point is specified in the file, the one closest
to the position on which the user clicks will be used.

ppm: path Use the PPM file referred to by path. Each color
in that file may give a different URL.

pgm: path As PPM, but the file is a grey scale file.

color:(r,g,b):URL In all PPM files referenced, this color
will point to the URL. r,g and b are decimal integers between
0 and 255 and the color defined is the combination of the
red (r), green (g) and blue (b) intensities. If the file searched
is a grey scale PGM file, the grey scale will be (r+g+b)/3.

color:(r,g,b)-(r,g,b):URL All colors in the range will point
to URL. If the file searched is a PGM (grey scale) picture, the
grey scale will be (r+g+b)/3.

color:greyscale-greyscale:URL All colors with an inten-
sity falling within the range will point to URL.

default:URL The url URL will be returned if nothing else
matched. Don't forget to set it.

void:URL The url URL will be returned if the client doesn't
support image maps or if the map file is accessed without
coordinates.
39

Web Site Creator
IntraSeek

IntraSeek offers the web site creator an easy way of making
information searchable on the world wide web. Together
with a few tags a powerful search page can be created.

This chapter contains information on how to create
search pages, how to use different character sets and how to
use the different crawler standards IntraSeek supports, and
all of this can be done by using a set of tags.

The IntraSeek tags
<intraseek_title> Gives a title to the search pages.

<intraseek_form> Generates a search form.

<intraseek_results> Generates the research results includ-
ing text summaries, links and search scores.

<meta> Defined by Netscape and is designed to help the
crawler indexing only the wanted pages.

<no_index> Removes parts of a document from the index
and the summaries.

<intraseek_title> Intraseek

This tag gives a title to the search pages.

lang=da en fi fr de hu it li no pt ro sl es se Languages
supported are: Danish(da), English(en), Finnish(fi),
French(fr), German(de), Hungarian(hu), Italian(it), Lithua-
nian(lt), Norwegian(no), Portuguese(pt), Romanian(ro),
Slovenian(sl), Spanish(es) and Swedish(se). If this attribute is
not used, English will be used as default.

<intraseek_form> Intraseek

This tag generates a search form.

lang=da en fi fr de hu it li no pt ro sl es se Languages
supported are: Danish(da), English(en), Finnish(fi),
French(fr), German(de), Hungarian(hu), Italian(it), Lithua-
nian(lt), Norwegian(no), Portuguese(pt), Romanian(ro),
Slovenian(sl), Spanish(es) and Swedish(se). If this attribute is
not used, English will be used as default.

ids=profile1[,profile2,...] Profiles defines how and what web
pages and servers should be indexed by the crawler and can
be created inside Intraseek configuration interface. This
attribute tells what profiles should be searchable in the
search form.

default_id=profile Sets the default profile in which to
search. This attribute cannot be used together with the ids
attribute.

target=URL Gives the URL where a dedicated search page
can be found.

action=URL Sends the user to a different page containing
the search form.

<intraseek_results> Intraseek

This tag generates the research results including text summa-
ries, links and search scores.

lang=da en fi fr de hu it li no pt ro sl es se Languages
supported are: Danish(da), English(en), Finnish(fi),
French(fr), German(de), Hungarian(hu), Italian(it), Lithua-
nian(lt), Norwegian(no), Portuguese(pt), Romanian(ro),
Slovenian(sl), Spanish(es) and Swedish(se). If this attribute is
not used, English will be used as default.

target=URL Gives the URL where a dedicated search
results page can be found.

action=URL Sends the user to a different page containing
the search results.

textcolor=color Changes the text color of the search results
summaries.

charset=iso-8859-1 (Latin1) iso-8859-2 (Latin2) iso-
8859-3 (Latin3) iso-8859-4 (Latin4) iso-8859-9 (Latin9)
More information about character sets and languages can be
found in the IntraSeek language page.

<meta> Intraseek

This tag is defined by Netscape and is designed to help the
crawler indexing only the wanted pages. It gives the docu-
ments a set of restrictions that the crawler must follow. It
also provides the crawler with important words and a sum-
mary shown

name=robots The argument robots lets the crawler know that
there will be a restriction imposed on its indexing of the page
it currently is indexing.

content=all,none,index,noindex,follow,nofollow These
are the restrictions that will be imposed on the crawler.
The restrictions can be mixed and should be given as a
comma-separated list.
40

IntraSeek
all This is the default setting, telling the crawler that there
are no restrictions. Lets the crawler index all words and
follow all new links found. This works the same as "in-
dex,follow".

none Tells the crawler to ignore the page, and not retrieve
and new links from it. This works in the same way as com-
bining "noindex, nofollow".

index Index this page

noindex Do not index this page.

follow Follow all new links found on this page.

nofollow Do not follow any new links found on this
page.

name=keyword

content=keyword1[,keyword2,...] Gives the crawler a
comma-separated list of the most important words in the
document. It is recommended to use this tag as much as
possible as the probability of a successful search is greatly
improved.

name=description

content=Summary of page content.. Meta descriptions are
used as page summaries when presenting search results. If
no meta description is found, IntraSeek will create a sum-
mary from the text that appears on top of the page.

A good use for meta descriptions could be to avoid the
text from navigation interfaces at the top of the pages,
which would otherwise become the summary.

Example
<sb-output file> <title>#title#</title> <meta
name="keywords" content="#keywords#"> <meta
name="description" content="#description#"> </
sb-output>

<no_index> </> Intraseek

This tag removes parts of a document from the index and
the summaries. It is only used by IntraSeek and is not at all
standard. Browsers might dislike it and HTML validators
complain.

By default, new links found within the <no_index>

specified area are followed.

nofollow If this attribute is inserted into the tag no new
links within the <no_index> area will be followed.
41

Web Site Creator
LogView

This chapter contains information on how to put LogView
diagrams and tables on the user's own web pages on the
server. The user interface of LogView, is described in the
User's manual.

If the administrator has configured LogView to permit
this, the LogView diagrams or tables can be displayed on any
page on the server. This is done by adding a <logview> tag
to the page, with the correct parameters for showing the
desired kind of report.

A very handy way to automatically create the tag text is to
go to the Advanced page, try out different parameters until
the report is satisfactory, and then press tag display button
and copy-and-paste the tag into the page.

<logview> LogView

The LogView module provides a special RXML tag, <log-
view>, which provides an easy way of inserting statistics
reports in ordinary RXML documents.

help Display this text.

manual Display the LogView manual.

list-groups List all statistics groups.

list-reports List all available reports.

list-defaults Report variable values, including default val-
ues.

group=statistics-group Select the statistics group for which
to make a report.

report=report Select what to report. Some available report
types are Hits, Bandwidth, Popular pages, Average session
length and Return code summary. Exactly which types are
available may depend on the exact version and configuration
of the LogView installation. Use the list-reports attribute to
find out which report types are available on a particular
server.

op=append sum This attribute is used to select whether to
append or sum the statistics over the specified period. See the
Advanced page of the Logview chapter in the User manual
for more information.

display=table line-chart bar-chart sum-bars pie-chart
3d-pie-chart ascii export This selects the format in which
to display the report.

max=num Maximum number of rows in the result.

unit=year month week day hour Select the granularity of
the report to be produced.

per=year month week day hour Selects a second level of
reported time resolution, and must have a values greater or
equal to unit. Available units are the same as for unit. The
difference between unit and per is that the former deter-
mines the width of the periods to sum to produce individual
sample points, while the latter only affects how the values
should be reported. The difference is perhaps easiest to see in
the bar chart report type, where granularity determines the
number of bars, while per determines how to label the bars;
if granularity is greater than per, bars within the same per
period will have the same label.

When using op=sum, corresponding unit values from
different per periods will be totaled, instead of being pre-
sented separately. For instance, with:

report=bandwidth op=sum unit=hour per=day

the diagram/table produced will show how the bandwidth
usage varies at different times of day, during the specified
time period (see below).

Setting unit and per to the same value, and using
op=sum, will have the effect of producing a single sum for
the whole time period specified (this is really only useful for
report=table).

from-year|from-month|from-day=value These attributes
select the start of the time period for which to produce a
report. Apart from plain digit values, the values can be speci-
fied with a '-' prefix, indicating an offset from the current
day/month/year, so that:

from-day=-3

means three days ago. from-day can also take values like this-
friday and last-tuesday, as well as today and yesterday. from-
month can take month names, as well as this-month and last-
month.

to-year|to-month|to-day=value These attributes select
the end of the time period for which to produce a report.
The values are specified just as for the corresponding from-
attributes.

Example
<logview report='Hits' unit=day per=month dis-
play=line-chart>
42

Supports system
Supports system

The supports system makes it possible to use features that are
only supported by a few browsers and still be compatible
with all browsers. This is done through a database of capabil-
ities supported by the different browsers. The <if> tag is
then used on the pages to make versions that use different
browser capabilities.

Pages are not customized for a certain browser, but rather
for browsers that support different features. When a new
browser is released, all that is necessary is to determine what
features it supports. Once that has been done, and the data-
base updated, all pages using the support system will work
with it.

Some features might work to a lesser degree on some
browsers. Old versions of the Macintosh version of Netscape
supports JavaScripts, but some JavaScripts make the
Netscape browser hang. If you have such JavaScripts, you
would probably want the support system to make sure they
are not sent to that version of Netscape. On the other hand,
if you have less complicated JavaScripts you will probably
want to send them.

To make the supports system work for you, you might
need to tweak it yourself. This can be done by the Chal-
lenger administrator by changing the Global Variables/Client
supports regexps variable (you will have to choose more options
to see it).

Since new browsers get released all the time, updated ver-
sions of the supports database are by default fetched regu-
larly from www.roxen.com.

Supports classes

List of the available features:

backgrounds The browser supports backgrounds accord-
ing to the HTML3 specifications.

bigsmall The browser supports the <big> and <small>

tags.

center The browser supports the <center> tag.

cookies The browser can receive cookies.

divisions The browser supports <div align=...>.

font The browser supports .

fontcolor The browser can change color of individual char-
acters.

fonttype The browser can set the font.

forms The browser supports forms according to the HTML
2.0 and 3.0 specifications.

frames The browser supports frames.

gifinline The browser can show GIF images inlined.

imagealign The browser supports align=left and align=right
in images.

images The browser can display images.

java The browser supports Java applets.

javascript The browser supports Java Scripts.

jpeginline The browser can show JPEG images inlined.

mailto The browser supports mailto URLs.

math The <math> tag is correctly displayed by the browser.

perl The browser supports Perl applets.

pjpeginline The browser can handle progressive JPEG
images, .pjpeg, inline.

pnginline The browser can handle PNG images inlined.

pull The browser handles Client Pull.

push The browser handles Server Push.

python The browser supports Python applets.

robot The request really comes from a search robot, not an
actual browser.

stylesheets The browser supports stylesheets.

supsub The browser handles <sup> and <sub> tags cor-
rectly.

tables The browser handles tables according to the
HTML3.0 specification.

tcl The browser supports TCL applets.

vrml The browser supports VRML.

File syntax

By default, the supports database is located in the file
server/etc/supports which is updated automatically
from www.roxen.com.

The server/etc/supports file should not be edited
directly, since that might interfere with the automatic
updates. If you need to tweak the supports database it is bet-
ter to create your own local supports file, and change the
Global Variables/Client supports regexps variable (you will have
to choose more options to see this variable).

The syntax used is:

patternfeature, -feature, ...
43

Web Site Creator
If the regular expression pattern matches the name of the cli-
ent, all features will be added to the list of features handled
by the client. If '-' is prefixed to the name of the feature, it
will be removed instead.

\ can be used to escape newlines.
If a line starts with '#', it is skipped, unless it is:

#include <path>

 which means include the contents of that file here

#define fromto

which means replace all occurrences of the word from with
to

or

#section pattern {
...
}

which is used to speed up parsing. If the name of the client
matches pattern it will go through the section. If the pattern
doesn't match the entire section will be skipped.
44

Security
Security

htaccess is a system for handling access control to your pages.
It works by placing an .htaccess file in a directory, which
contains the access control lists for that directory. It is possi-
ble to get fine grained security and to configure exactly who
can view which pages. The .htaccess support module must be
enabled for htaccess to work.

It is possible to distinguish users either by the IP address
or domain name of their computer or by letting them
authenticate with a user name and password. The user name
and password is by default compared via an authentication
module. That usually means that users are authenticated by
the operating systems authentication system.

If you want to have password protected pages usable by
users that are not handled by the current Authentication
module you can create your own database of users by creat-
ing .htpasswd and .htgroup files.

htaccess is a standard supported by many web servers.
The access control you have built with htaccess should there-
fore be portable to other web servers.

.htaccess

A .htaccess file consists of lines containing directives.
Apart from the Limit; directive, all directives have the form

directive argument(s)

where argument(s) is one or more arguments. The directives
supported are:

AuthUserFile Use this user and password file to authenti-
cate users. Typically, the AuthUserFile is called .htpasswd

AuthGroupFile Use this group file, which contains a data-
base of which groups users are member of. Typically, the
AuthGroupFile is called .htgroup, if used.

AuthName Set the authentication realm, which can be any
name you choose. The name will be used to tell browsers
how to label user authentications within a session, so that the
browsers can automatically repeat passwords the user has
already entered when accessing new pages with the same
access requirements.

Redirect Redirect all accesses for pages in the directory to
this URL.

ErrorFile Show this page in case the requested page could
not be found, maybe because the user did not have permis-
sion to view it.

Then there is the <Limit> container tag. The attributes are
the HTTP method(s) that access should be limited to, GET,
PUT, POST or HEAD. The contents of the tag are access
control directives, one directive on each line. Possible direc-
tives are:

allow from address
deny from address Allow or deny access to users from a
DNS domain or IP number. www.roxen.com means the
computer while .roxen.com means all computers on the
domain roxen.com. The same way 194.52.202.3 means the
computer while 194.52. means the net starting with
194.52

require user user(s)
require group group(s) Allow access only for the named
user(s) or group(s).

require valid-user Allow access to any user present in the
AuthUserFile or Authentication module.

satisfy all
satisfy any Decide what happens if both require and allow
rules are present; all indicates that the user must satisfy both
kinds of requirements, while any means that it is enough that
the user satisfies either kind.

order deny,allow
order allow,deny
order mutual-failure The order rules decides how to prior-
itize deny and allow rules. If the order is set to deny,allow,
deny rules will be processed before allow rules. With
allow,deny, allows will be processed before denies, and with
mutual-failure, hosts allowed by any allow rule will be
allowed, and other hosts denied. Deny,allow is the default.

The rule evaluation does not stop until all rules have
been processed, so the earlier a rule is processed, the lower
priority is has in determining access. This only matters when
different rules contradict each other, for instance when a
wide-ranging deny rule forbids access to a certain domain,
and an allow grants access to a smaller part of the domain.

Example
A typical .htaccess file would look something like this:

 AuthUserFile /home/frotz/.htpasswd
 AuthGroupFile /home/frotz/.htgroup
 AuthName MyTestDomain
 AuthType Basic

 <Limit PUT HOST HEAD>
 require user frotz
 </Limit>

 <Limit GET>
 allow from all
 </Limit>

The .htaccess file above would allow everyone to GET
documents in the directory, but all other kinds of access
would be restricted to the user frotz, and expect this user to
login with the password listed for frotz in the .htpasswd file
in the home directory of the user frotz.
45

Web Site Creator
.htpasswd

The format of the password file is straightforward, one line
per user, with the line containing the user name, followed by
a colon, followed by the user's password encrypted with the
standard Unix password encryption. The <crypt> tag can
be used to encrypt such a password.

In other words, an .htpasswd can look like this:

 frotz:taeWr6tbTZKO6
 gnusto:jKXVnZH6eXR7

with one line for each user.

.htgroup

The format of the group file is straightforward, one line per
group, with the line containing the group name, followed by
a colon, followed by the users in the group. Users are sepa-
rated by commas.

In other words, an .htgroup file can look like this:

 all:frotz,gnusto
 admins:frotz

with one line per group.
46

Appendix
Appendix
47

	Web Site Creator
	Introduction
	Concepts
	RXML
	Modules

	Products
	SiteBuilder
	LogView
	IntraSeek
	Database API pro

	Publishing web pages
	Publishing web pages
	Using Challenger directly

	Content types

	RXML
	Information tags
	<accept-language> Main RXML parser
	Example

	<accessed> Main RXML parser
	Example

	<clientname> Main RXML parser
	Example

	<configurl> Main RXML parser
	Example

	<configimage> Main RXML parser
	Example

	<countdown> Countdown
	Example

	<date> Main RXML parser
	Example

	<file> Main RXML parser
	Example

	<help> Main RXML parser
	Example

	<available_languages> Language
	<language> Language
	<unavailable_language> Language
	<line> Main RXML parser
	Example

	<list-tags> Main RXML parser
	<modified> Main RXML parser
	Example

	<number> Main RXML parser
	Example

	<pr> Main RXML Parser
	Example

	<referrer> Main RXML parser
	Example

	<user> Main RXML parser
	Example

	<version> Main RXML parser
	Example

	String tags
	Special Attributes
	String tags
	<ai> </> Indirect href
	Example

	<autoformat> </> Main RXML parser
	Example

	<case> </> Main RXML parser
	Example

	<comment> </> Main RXML parser
	<doc> </> Main RXML parser
	Example

	<fl> </> Folder list tag
	Example

	<obox> </> Outlined box
	Example

	<smallcaps> </> Main RXML parser
	Example

	<sort> </> Main RXML parser
	Example

	<source> </> Main RXML parser
	Example

	<spell> </> Spell checker
	Example

	<tablify> </> Tablify
	Example

	<trimlines> </> Main RXML parser
	Example

	Variable tags
	<set> Main RXML parser
	Example

	<unset> Main RXML parser
	Example

	<cset> </> Main RXML parser
	Example

	<append> Main RXML parser
	Example

	<define> </> Main RXML parser
	Example

	<undefine> Main RXML parser
	Example

	<insert> Main RXML parser
	Example

	<use> Main RXML module
	Example

	<formoutput> </> Main RXML parser
	Attributes
	Example

	URL tags
	<apre> </> Main RXML parser
	Example

	<aconf> </> Main RXML parser
	Example

	<set_cookie> Main RXML parser
	Example

	<remove_cookie> Main RXML parser
	Example

	<auth-required> Main RXML parser
	Example

	<expire-time> Main RXML parser
	Example

	<header> Main RXML parser
	Example

	<redirect> Main RXML parser
	Example

	<return> Main RXML parser
	Example

	<killframe> Killframe tag
	Example

	If tags
	<if> </> Main RXML parser
	Modifier Attributes
	Complex expressions
	Example

	<else> </> Main RXML parser
	Example

	<elseif> </> Main RXML parser
	<true> Main RXML parser
	<false> Main RXML parser

	Graphics tags
	File Formats
	Color Attributes
	<gtext> </> Graphics text
	Example

	<diagram> </> Business Graphics
	Internal Tags
	Pie
	Bar
	Sumbar
	Normalized Sumbar
	Line Chart
	Graph
	<data>
	<colors>
	<legend>
	<xaxis>, <yaxis>
	<xnames>

	<gclock> Pike Image Module
	Example

	<pimage> </> Pike Image Module
	<imgs> Main RXML parser
	Example

	<config_tablist> </> Config tab-list
	Example

	Database tags
	<sqlquery> SQL
	Example

	<sqltable> SQL
	Example

	<sqloutput> </> SQL
	Example

	LDAP
	<ldap> LDAP module
	Example

	<ldapoutput> </> LDAP module
	Example

	<ldapfor> </> LDAP module
	Example

	Programming tags
	<catch> </> Main RXML parser
	Example

	<throw> </> Main RXML parser
	Example

	<cgi> CGI executable support
	<crypt> Main RXML parser
	Example

	<debug> Main RXML parser
	Example

	<default> Main RXML parser
	Example

	<for> </> Main RXML parser
	Example

	<gauge> Main RXML parser
	Example

	<nooutput> </> Main RXML parser
	Example

	<noparse> </> Main RXML parser
	Example

	<pike> </> Pike tag
	Example

	<random> Main RXML parser
	Example

	<realfile> Main RXML parser
	Example

	<scope> </> Main RXML parser
	Example

	<sed> </> SED module
	<strlen> </> Main RXML parser
	Example

	<trace> Main RXML parser
	Example

	<vfs> Main RXML parser
	Example

	<wizard> </> Wizard generator
	Attributes for <var> and <cvar>
	Example

	SSI tags
	<!--#config--> Main RXML parser
	<!--#echo--> Main RXML parser
	Example

	<!--#exec--> Main RXML parser
	<!--#flastmod--> Main RXML parser
	<!--#fsize--> Main RXML parser
	<!--#include--> Main RXML parser

	Image maps
	IntraSeek
	The IntraSeek tags
	<intraseek_title> Intraseek
	<intraseek_form> Intraseek
	<intraseek_results> Intraseek
	<meta> Intraseek
	Example

	<no_index> </> Intraseek

	LogView
	<logview> LogView
	Example

	Supports system
	Supports classes
	File syntax

	Security
	.htaccess
	Example

	.htpasswd
	.htgroup

	Appendix

