

How-to Guide

SAP NetWeaver 2004s

How To…
Development
Landscape
Scenarios in
NWDI
Version 1.00 – November 2006

Applicable Releases:
SAP NetWeaver 2004s

© Copyright 2006 SAP AG. All rights reserved.

No part of this publication may be reproduced or

transmitted in any form or for any purpose without the

express permission of SAP AG. The information

contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its

distributors contain proprietary software components of

other software vendors.

Microsoft, Windows, Outlook,

and PowerPoint

are

registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel

Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400,

iSeries, pSeries, xSeries, zSeries, z/OS, AFP, Intelligent

Miner, WebSphere, Netfinity, Tivoli, and Informix are

trademarks or registered trademarks of IBM Corporation

in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered

trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame,

WinFrame, VideoFrame, and MultiWin

are trademarks

or registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or

registered trademarks of W3C
®
, World Wide Web

Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems,

Inc., used under license for technology invented and

implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, and other

SAP products and services mentioned herein as well as

their respective logos are trademarks or registered

trademarks of SAP AG in Germany and in several other

countries all over the world. All other product and

service names mentioned are the trademarks of their

respective companies. Data

contained in this document serves informational

purposes only. National product specifications may vary.

These materials are subject to change without notice.

These materials are provided by SAP AG and its affiliated

companies ("SAP Group") for informational purposes

only, without representation or warranty of any

kind, and SAP Group shall not be liable for errors or

omissions with respect to the materials. The only

warranties for SAP Group products and services are those

that are set forth in the express warranty statements

accompanying such products and services, if any.

Nothing herein should be construed as constituting an

additional warranty.

These materials are provided “as is” without a warranty

of any kind, either express or implied, including but not

limited to, the implied warranties of merchantability,

fitness for a particular purpose, or non-infringement.

SAP shall not be liable for damages of any kind including

without limitation direct, special, indirect, or

consequential damages that may result from the use of

these materials.

SAP does not warrant the accuracy or completeness of

the information, text, graphics, links or other items

contained within these materials. SAP has no control

over the information that you may access through the

use of hot links contained in these materials and does not

endorse your use of third party web pages nor provide

any warranty whatsoever relating to third party web

pages.

SAP NetWeaver “How-to” Guides are intended to

simplify the product implementation. While specific

product features and procedures typically are explained

in a practical business context, it is not implied that those

features and procedures are the only approach in solving

a specific business problem using SAP NetWeaver. Should

you wish to receive additional information, clarification

or support, please refer to SAP Consulting.

Any software coding and/or code lines / strings (“Code”)

included in this documentation are only examples and

are not intended to be used in a productive system

environment. The Code is only intended better explain

and visualize the syntax and phrasing rules of certain

coding. SAP does not warrant the correctness and

completeness of the Code given herein, and SAP shall

not be liable for errors or damages caused by the usage of

the Code, except if such damages were caused by SAP

intentionally or grossly negligent.

 - 1 -

1 Scenario.. 2
2 Introduction.. 2
3 Related Information ... 2
4 Developer’s Test System .. 3

4.1.1 Setup of Test Systems ... 3
4.1.2 Upgrade with JSPM ... 3

5 Development System Scenarios .. 4
5.1 “Private” Test System .. 4

5.1.1 Deployment of single DCs.. 6
5.1.2 Deployment of SCs .. 6

5.2 Shared Remote Test System ... 7
5.3 One central DEV System – no local Test System .. 8
5.4 Central NWDI DEV System for local and central test 10
5.5 Standalone System for local and central tests.. 11
5.6 Local Test System + Central NWDI DEV System... 13

6 Summary .. 14
7 Abbreviations... 14

 - 2 -

1 Scenario

Customers develop or modify Java based applications that run on SAP Application
Server Java (short: SAP AS Java). For Java-based development, SAP NetWeaver
Developer Studio (short: NWDS) is used. Compared to the ABAP world, where design
time and runtime are tightly integrated within the same server, the Java world looks
different. Developers work with a local development environment that consists at least of
an IDE (here: NWDS). To test new developments, an SAP Application Server Java is
needed that is not part of NWDS. This first test server is an essential part of the
development environment and landscape.

In NetWeaver ’04, SAP introduced the SAP NetWeaver Development Infrastructure
(short: NWDI) for the complete software life cycle management of Java-based
applications. NWDI provides central administration of the development environment for
all developers, source code and build control, and management of the whole transport
landscape.

The development environment (IDE and test engine), in combination with NWDI,
provides you with several scenarios for using runtime systems (short: RTSs) for
development and early integration tests. This guide helps you to clear up any questions
that arise during the setup of the landscape. It focuses on the development landscape
scenarios, that is, the environment (test systems) where developers test their actual
code.

2 Introduction

This How-To Guide gives an overview of the most common landscape scenarios
possible when setting up a development environment with NWDI. Customers have
specific requirements because of defined corporate processes and/or hardware and
software requirements. The guide introduces the different possible landscapes for the
development environment and emphasizes the use of runtime systems for early
integration tests.

3 Related Information

Additional information about SAP NetWeaver Development Infrastructure can be found
at the following locations:

SAP Help Portal
http://help.sap.com/saphelp_nw2004s/helpdata/en/01/9c4940d1ba6913e10000000a155
0b0/frameset.htm

SDN
http://sdn.sap.com/irj/sdn/developerareas/was > Key Topics: Development Infrastructure
(NWDI)

 - 3 -

4 Developer’s Test System

Developing Java-based applications, like J2EE web applications, Web Dynpro or
business logic with Enterprise Java Beans technology means, in general, local
development instead of the central development that we know from the ABAP world.
Local development means that developers usually work with their desktop PCs or
laptops and have a local IDE (here: SAP NetWeaver Developer Studio) installed. For
testing purposes they need at least an SAP Application Server Java to check
deployments, to check whether compiled code executes correctly and to run simple unit
tests. The test server can be installed as a local workplace installation for each
developer, or a remote engine that is used by all developers for early integration tests.

On the one hand, this local development approach (which is common in the Java
community) increases the flexibility of the development process. On the other hand, it
may increase the complexity of the system landscape and therefore requires proper
process and landscape planning to benefit from this flexibility.

When you set up a development and test landscape with NWDI, several scenarios are
possible involving local, remote, or central development systems. But before we
introduce these scenarios, some remarks concerning test systems in general:

4.1.1 Setup of Test Systems

In a three or four system landscape, the connected runtime systems usually have
different roles for different testing purposes. The first test system, used by the developer
directly, should be a system where developers can deploy and run their code. Depending
on the type of application, some requirements for the setup of a test server arise. In
some cases, a pure SAP AS Java server is not sufficient, because the application uses
some additional NetWeaver components or back-end systems to be able to run correctly.
For the local developer server, a Developer Workplace installation (usage type AS Java
and EP) is generally used. Test scenarios for complex applications using cross
components like ESS, MSS, CRM, BI, and so on are not possible out-of-the-box. These
scenarios are usually tested in a central test environment because setting them up on
each developer’s engine would cause much more work. Depending on the scenario, it
might be possible to combine local engines with other components or back-end systems
from a central test environment.

4.1.2 Upgrades with JSPM

Hint: Be aware that NWDS and the SAP AS JAVA server on which the developed
software is deployed must always have exactly the same version (Support Package
level). Otherwise you cannot guarantee that they will function properly.

As mentioned, the recommendation is that the Support Package level of the NWDS must
match the Support Package level of the runtime systems where the application is
deployed. Therefore the test servers have to be updated from time to time. The update
(Support Package) is done using JSPM; for upgrades to a target release, the SAPJup
tool is used. Furthermore, if additional business packages, such as XSS, are needed in
the local test system they have to be installed as described in the installation guides.

 - 4 -

5 Development System Scenarios

This guide explains possible development system scenarios with their pros and cons, so
guiding you in your decision about how to set up the runtime systems in your
development landscape. In the context of NWDI it discusses the runtime systems for
developers, which means all systems where developers have access rights for
deployments. The complete NWDI transport landscape with CONS, TEST, and PROD
systems is not part of this discussion.

5.1 “Private” Test System
The first scenario is a local development environment with a local test system. Every
developer has his or her own local SAP NetWeaver Developer Studio (NWDS) for
application development. To test the application, a ‘”private” SAP AS Java engine is
used exclusively by each developer and is usually installed on the local machine. The
installation would be a Developer Workplace installation where the NWDS with an SAP
AS Java engine is installed (for MaxDB or MS SQL Server).

Figure 1: Developer’s PC with local SAP AS Java

The engine that the developer uses for local tests is specified in the following NWDS
configuration: Window – Preferences – SAP J2EE Engine.

Remember that, when we talk about local engines in this guide, we mean the SAP J2EE
Engine that is configured by choosing Window – Preferences – SAP J2EE Engine.

 - 5 -

Figure 2: NWDS – Configuring a local/remote SAP J2EE Engine

A remote engine (engine is installed on a separate machine) can also be configured in
the case where the developer PC is not powerful enough or an additional engine is
needed. But in both cases, the developer uses the engine on its own for “local”
deployments and tests (right-click the development component project and select
Development Component – Deploy). The phrase “local engine” will be used here, even if
the engine is installed on a separate, remote machine. In this scenario, the local engine
is not configured, administrated, or controlled by NWDI.

The advantage of a local engine is that every developer has an independent and isolated
test environment, which does not affect others during their work. There is no overwriting
issue, if developers are working in the same deployment unit. And, last but not least,
every developer can debug his or her application whenever he or she likes and does not
interfere with others during a breakpoint. Developers can intensively test their local
changes in a local test engine before they decide to check them in and make them
visible to others. This is an example of the degree of freedom that is not known (and not
possible) in the ABAP world. In the Java world the local environment is very common
and can increase a developer’s efficiency.

On the other hand, a local engine means that an extra system (SAP AS Java engine)
has to be set up and updated for each developer, and sometimes upgraded as well. This
is of course administrative effort that has to be calculated and considered.

After a successful local test, developers check their sources into the DTR to make them
visible for other team members within the inactive workspace. The Activation step starts
the central CBS build and, after a successful build, the automated deployment to the
central DEV system (if configured in the CMS track) is triggered.

 - 6 -

5.1.1 Deployment of Single DCs

Since the local engine is not administrated or controlled by NWDI, no automatic
deployment of used archives (used DCs) takes place. The developer is responsible for
getting and deploying the required DCs. In a larger development team, many developers
work within one or more software components and develop new development
components that have usage dependencies. To test his or her own application at
runtime, a developer has to deploy the dependent DCs (from other developers) on the
local test machine as well. Usually the source code is not needed just for deployment
and runtime tests. Used DCs can be deployed from NWDS. Go to the Active DCs view
within the Development Configurations perspective, right-click the DC that you want to
deploy, and choose Sync Archive. After the archives have been synchronized, choose
Deploy from the context menu to deploy the DC to your local engine. This is of course
only possible for DCs that have a deployable build result.

Figure 3: Synchronize and deploy used DCs to local engine

5.1.2 Deployment of SCs

Sometimes you need to deploy a complete SC on which a usage dependency exists on
a local test system to test the current application. The recommendation is that a CMS
administrator downloads all required SCAs on a regular basis and puts them on a share
for developers. The developers then deploy the SCAs on their local machines using
SDM.

To download the software components from CMS, use the Download Servlet. Open a
browser window and enter http://<cbshost>:<port>/SCD/SCDownload. You get the
following screen where you enter the DomainID, TrackID, Vendor, and the software
component name. You also have to select the system (e.g. Development) and choose
the option “without buildarchives”. Click the Create Archive button. A link is generated
where you can download the created archive (SCA file) for the specified software
component.

 - 7 -

Figure 4: SCDownload Servlet

5.2 Shared Remote Test System
The following scenario is similar to Scenario 5.1. Therefore the topics described in 5.1.1
and 5.1.2 apply here as well. The difference is that several developers share one remote
SAP AS Java engine for local deployments and to test their local changes. The remote
engine is configured as described in 5.1, but in scenario 5.2 the engine is shared by
more than one developer.

Figure 5: Shared remote SAP AS Java

 - 8 -

This scenario can be used when developer PCs are not powerful enough for an
additional engine or the required testing environment setup is too complex for each
developer. But keep in mind that only one developer at a time can debug (parallel
debugging should be possible in the next major release) and that parallel deployments of
the same deploy unit lead to overwriting issues.

The fact that several developers deploy their applications and underlying DCs and SCs
to the shared engine might cause overwriting problems. Developers cannot be sure that
they actually test their deployed versions of their own DCs as well as the dependent DCs
if another developer is deploying the same DCs at the same time. To deal with this
problem some rules concerning when and what may be deployed are required. In
addition, this overwriting problem must be taken into account in the DC and SC
architecture.

A software design where the applications are independent deployable units (DCs) that all
use the same underlying framework avoids most of these overwriting problems.
Moreover, if it is possible to keep the framework layer stable and if it is an independent
deployable unit, it can be deployed separately on a regular basis (for example, once a
day). In this case, all application developers know that they have to resynchronize the
corresponding libraries of the new framework version to rebuild their application.

An example of an architecture that leads to overwriting problems when using a shared
remote engine would be the following:
 An enterprise application consists of several Web Modules and EJB DCs. Every DC is
developed by more than one developer. There is only one deployable unit (the EAR DC)
that includes all other DCs (DC reference of type Assembly). Every developer works
locally and tests his or her changes without checking them in. When assembling and
deploying the EAR file, each developer deploys his actual DC, but as a side effect
deploys old versions of all other DCs contained in the same EAR file. It is obvious that
each deployment overwrites the previously deployed DCs of all other developers. We do
not recommend the shared remote engine approach for this type of architecture.

The advantage of this scenario is the possibility to test developments “locally” before
checking them into DTR and releasing them for propagation through the landscape. The
TCO is reduced compared to Scenario 5.1 because of a lower number of runtime
systems (cost reduction and less administration work). A variant of this scenario is to use
multiple group servers. Each development group has its own remote server for its “local”
tests.

5.3 One Central DEV System – No Local Test System
The next scenario describes the use of a central NWDI DEV system as the only test
system for developers. Here a similar situation arises as in 5.2, where developers share
a remote runtime system. The difference is that the SAP AS Java engine is an NWDI
controlled system, a runtime system (RTS) that is configured within the DEV system of

an NWDI track. Here the local/manual deployment is switched off − no J2EE engine is
configured in the Developer Studio preferences. Automatic deployment is enabled in the
CMS track.

 - 9 -

Figure 6: Central NWDI DEV system – no local runtime system

In contrast to Scenario 5.2, the deployment takes place after the developer checks in
and activates his or her changes. Only if the activation step is successful, (which means
a central build is performed) does the SDM deployment start in the background. The
advantage is that the deployment can still be triggered from the developer within the
Developer Studio. It is transparent to the developer, which means he or she does not
need to know the SDM login credentials, ports, and so on. No CMS administrator is
needed to deploy the changed applications in the central DEV system. If the central build
requested during the activation step is successful and the automatic deployment is
enabled, the changes are deployed to the DEV RTS immediately.

Another advantage of this scenario is that all dependent DCs are always up-to-date and
deployed in the connected RTS. For this scenario we do not have an overwriting problem
even with a software architecture as described in 5.2 where the DCs of multiple
developers are contained in one deployable unit. This is because the centrally built
version, including the newest (active) DCs of all developers, is used for the deployment.

As already mentioned, if automatic deployment is enabled, every developer can decide
when he or she wants to deploy to the central DEV RTS. This also means, however, that
no defined system state is possible in the DEV runtime system. But in contrast to
Scenario 5.2, the deployed DCs are always in an active state in the sense of a
successful build result.

The disadvantage in comparison to local/remote engines (Scenarios 5.1 and 5.2) is that
developers are forced to check in and activate their changes before they can test their
code. This leads to a high number of versions and activities. But what is more annoying
is the longer development or deployment cycle, that is, the time between saving the
source changes in the editor and the time when tests can start. This usually does not
meet the developer’s requirement for early development tests. Another disadvantage is

 - 10 -

that, in contrast to the previous scenarios, developers can only test their changes if the
code compiles against the active state within the CBS. This means you have to react to
all incompatible changes that other developers activate before you can continue with
your tests. Last but not least, the software life cycle theory recommends testing the code
before checking it into the DTR.

The development landscape described here is mainly used for maintenance scenarios
and not for ongoing development (or only in very rare cases). In a maintenance scenario
longer deployment cycles might be acceptable because the number of deployment
cycles required for one bug fix is typically very small.

5.4 Central NWDI DEV System for Local and Central Tests
Some situations do not allow a local or remote engine as described in 5.1 and 5.2
because of hardware restrictions or time constraints. But nevertheless developers have a
requirement for fast deployments and local tests. Here the following scenario can be
used, where the central NWDI DEV system is used also as a “local” engine for local
tests. Developers do this by specifying the NWDI DEV system as an SAP J2EE engine in
the preferences of their NWDS (see Figure 1).

Figure 7: Central NWDI DEV system for local and central tests

This scenario is similar to 5.2 because all developers share a remote SAP AS Java
engine to test their changes locally. The difference here is that the remote engine is used
as an NWDI DEV system as well. So the deployment takes place twice. First, the

 - 11 -

developer deploys directly from the Developer Studio and, later, the activated changes
are deployed in an automatic CMS deployment. Developers must be aware that a
mixture of inactive and active DCs is deployed to the DEV system. Furthermore the
overwriting problem discussed in 5.2 persists here as well.

Even so, this scenario is sometimes useful within a maintenance scenario, where the
developer has to develop for a new release and has to fix a bug in a productive version
that runs in parallel on an older SP level or release. In such a scenario it is expected that
there are only few developers working in parallel, which reduces the overwriting problem.
To test a bug fix, a developer would not usually set up a local test system. The
configuration of the DEV runtime system (configured in the Maintenance track) as a local
engine in the Developer Studio gives you the advantage of direct deployments and early
tests, unlike in scenario 5.3.

5.5 Standalone System for Local and Central Tests
The next scenario describes how to use one standalone runtime system as a local test
engine for each developer and as a system for early integration tests. The system is
configured as an SAP J2EE engine within the Developer Studio of each developer and
can be used for local tests.

Figure 8: Standalone central RTS for local and central tests

A defined state of the deployed components is needed for integration tests. This is
usually the active buildspace that is updated during the activation step. The CMS
administrator downloads the build results of the active buildspace from the DEV system
and deploys them (using SDM) to the integration runtime system at regular intervals (e.g.
every Monday or every night). The integration runtime system is a standalone engine,
which means it is not configured as an NWDI runtime system within the track

 - 12 -

configuration. Therefore the activation step does not trigger an automatic deployment to
this system.

To deploy the active state of the development system, the Download Servlet (see 5.1.2)
is used to download the active SCA for a specific software component. Open a browser
window and enter http://<host>:<port>/SCD/SCDownload. Enter the DomainID, TrackID,
Vendor, and the Software Component name. Choose the Development system and the
option without build archives. Click the Create Archive button and wait until the download
link appears. Download the sca file and deploy it using SDM.
To enable an integration test of the active development state, the local deployment
should be avoided during that test phase. Furthermore, all changes should be checked in
and activated. The administrator can also activate all closed activities (activities that are
checked in but not activated) in the NW Developer Studio by setting the user filter to all
users.

You can also use the DOWNLOADSCA command in the CBS Command Line tool to
download the SCA from the DEV buildspace.

Hint: During the SCA download process you have to make sure that the CBS build is not
running. If a DC is being built, it will not be part of the created archive. Therefore you
have to stop CBS by setting the Request Processing Mode to OFF. This can be done in
the CBS WebUI – Buildspaces. Choose the Edit button, change the value for that mode,
and save your changes (see Figures 10 & 11).

Figure 9: CBS WebUI – Buildspaces – Choose Edit

Figure 10: Request Processing Mode - OFF

 - 13 -

After downloading the SCA, the administrator deploys it using SDM. Here you have to
specify the following option “Update deployed SDAs/SCAs that have any version” (see
Figure 12). This is needed because the SDAs deployed directly using Developer Studio
might have a newer version. Furthermore, you can have the situation that a new DC is
created and deployed in a local deployment, which has not been activated. The
downloaded SCA of the active buildspace does not include the newly created but non-
activated DC. Since the deployment of the active SCA does not delete DCs that are not
part of the SCA, the SDA exists, but not as part of the SCA. If the DC has to be deleted,
you have to undeploy it manually using SDM.

Figure 11: SDM deploy options

5.6 Local Test System + Central NWDI DEV System
A scenario especially useful for ongoing development is to use a local test system and a
central DEV system. The local engine is used as described in 5.1 (or 5.2) for
independent local tests and the central DEV system is used as described in 5.3 for early
integration tests.

Figure 12: Local Test System + Central NWDI DEV System

 - 14 -

The deployment to the central DEV system is done automatically if automatic
deployment is enabled. This option enables the “Deploy on Demand” feature, where the
developer can decide when the new changes he or she checked into the DTR are
deployed to the central DEV runtime system in the activation step.

Since the deployment to the central DEV system is triggered by each developer, it is
used by developers to test their new changes together with all other active development,
before they release their activities to the CONS system. The CONS system can be used
to test a defined state during a specified phase before the software component is
propagated to the final assembly test. In a three-system landscape, the CONS system is
usually omitted. The combination of local tests and early integration tests combines, of
course, the advantages of both scenarios. But on the other hand the number of required
runtime systems is higher which leads to higher TCO.

6 Summary

Several possible development scenarios are described in this guide, and the pros and
cons, side effects, and things to consider for each scenario have been pointed out to
you. In comparison to the ABAP world, the local development environment is much more
flexible and gives you greater liberty in setting up a development landscape. This
flexibility effectively spoils you for choice and you need to balance your reasons for using
one scenario or another. Aspects like software architecture, hardware budget, TCO,
administration work, time need for system setup and maintenance, number of developers
and size of teams, and so on are important factors in coming to the right decision. There
is no recommended scenario because it depends on which scenario fits your landscape,
project environment, hardware setup, and so on best. What is important in any case is to
consider any side effects or restrictions that are part of the development system setup.
Therefore, detailed planning and some rules for the development process should be part
of every setup of an NWDI Java development landscape.

7 Abbreviations

CMS Change Management Service
CONS NWDI Consolidation System
DC Development Component
DEV NWDI Development System
IDE Integrated Development Environment
JSPM Java Support Package Manager
NWDI NetWeaver Development Infrastructure
NWDS NetWeaver Developer Studio
PROD NWDI Production System
RTS Runtime System
SAP AS Java SAP NetWeaver Application Server Java
SC Software Component
SCA Software Component Archive
SDA Software Delivery Archive
TEST NWDI Test System
TCO Total Cost of ownership

 - 15 -

www.sdn.sap.com/irj/sdn/howtoguides

