
Integrating 3
rd
 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 1

Integrating 3rd Party Java Logging Frameworks into SAP’s
Logging Framework

Applies to:

SAP NetWeaver Composition Environment 7.1

Summary

Logging is a means for applications to inform system administrators or developers about their current state or
state changes. Java application developers typically use the Log4j or Apache Commons Logging (JCL)
frameworks to log information. Both logging frameworks are open source, platform independent and widely
used in many projects. SAP’s business solutions use a proprietary SAP logging API, which is integrated into
the SAP Solution Manager. This ensures that SAP support teams can access log information at customer
sites in urgent cases. It is recommended that Java applications running on SAP NetWeaver use the Logging
API, since all logs are then accessible in one common format within one log viewer.

When developing Java applications on SAP NetWeaver developers can choose between any of these three
logging frameworks among others of course. There are good reasons for each framework. This tutorial
discusses the following three use cases:

• Logging with Log4j / Apache Commons Logging (JCL)

• Logging with SAP’s Logging API

• Integrating Log4j / Apache Commons Logging into SAP’s Logging API

This tutorial shows how the Java logging frameworks can be configured to log into SAP’s logging
infrastructure without instrumenting any existing source code. The implementation of a required bridge that
routes Log4j/JCL logs to SAP’s logging infrastructure will be shown. Hence integrating 3

rd
 party logging

products into SAP’s logging framework can be done with an absolutely feasible effort for almost every Java
development scenario.

Disclaimer

This tutorial is an update and enhancement of the tutorial “Integrating 3
rd

 Party Logging into SAP Logging” by
Johannes Hamel, 2005, which is also available on the SAP Developer Network (SDN).

Author(s): Peter Kulka

Company: SAP AG

Created on: November 19, 2007

Author Bio

Peter Kulka received his PhD in Computer Science / Computer Graphics from the University
of Auckland, New Zealand. After teaching Java / C++ programming courses at the University
of Auckland, Peter joined SAP AG in 1999. Until November 2005 Peter was responsible for
the product definition of the SAP NetWeaver Application Server, SAP’s Java EE 5 compliant
application server. Currently Peter is a Solution Architect in SAP’s Global Ecosystem and
Partner Group, where he advises SAP partners on how to architect their Java solutions
based on SAP NetWeaver. Peter presented at leading industry conferences such as
JavaOne, SAP TechEd, and OOP.

 Integrating 3
rd

 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 2

Table of Contents

Applies to: .. 1

Summary.. 1

Disclaimer .. 1

Author Bio .. 1

Table of Contents .. 2

Introduction .. 3

Typical Logging Use Cases ... 3

Logging with Log4j / Apache Commons Logging (JCL)... 3

Logging with SAP’s Logging API ... 3

Integrating Log4j / Apache Commons Logging into SAP’s Logging API 4

Logging Bridge for Log4j .. 4

Logging Bridge for Apache Commons Logging (JCL).. 8

Run the Examples ... 11

Use the Logging Bridges in other Java Development Projects ... 12

Known Limitations.. 13

Related Content ... 13

Copyright.. 14

 Integrating 3
rd

 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 3

Introduction

Administrators, developers and support organizations view log entries to get information about the health of
their applications and systems. In the Java community Log4j or Apache Commons Logging (JCL) are
probably the most popular and widely used logging frameworks.

The Log4j logging framework provides for developers an abstraction from logging details, such as the format
of log entries or the location of log files. The framework consists of Loggers, Layouts (or Formatters /
Renderers) and Appenders (or Handlers). The Loggers are logical log file names used by the Java source
code to identify the different loggings. Each Logger may be assigned to a Layout, which formats the log
entries. The formatted log entries are passed to Appenders, which are Java classes that write the actual log
files. Examples for Appenders that come with Log4j are the FileAppender, ConsoleAppender,

SocketAppender and SMTPAppender. The assignment of Loggers to Layouts and Appenders is done

through configuration (configuration file: log4j.properties). This means that the Java developer, who

uses the Log4j API, does not need to worry about the logging details, since this can later be configured.
Log4j is used by many open source projects, such as JBoss or TheServerSide.

While Log4j provides an abstraction to the logging details, Apache Commons Logging (JCL) goes one step
further an abstracts the Java code from the underlying logging framework, such as Log4j. So using JCL the
logging framework can be switched by configuration (in the commons-logging.properties file) without

changing the source code. This is particular useful for Java frameworks such as the Apache Struts Web
application framework. The combination of JCL and Log4j is very popular.

SAP’s logging API distinguishes between logging and tracing. Log files (with the extension .log) are

intended for administrators, while trace files (with the extension .trc) are supposed to be viewed by

developers and support people. Log messages are subdivided into categories, which must be provided when
calling the logging API. The top-level categories are Archive, Services, System and Applications.

Using categories helps administrators to quickly find the relevant log entries. Since trace messages are
meant to be viewed by developers and support people, they contain very detailed information. To quickly find
the relevant trace entry, trace messages are organized by code packages. The default location of the log and
trace files is

<SAP_install_directory>/<system_name>/<instance_name>/j2ee/cluster/server<number>/log/.

In the following discussion we will focus on Log4j and JCL as examples for Java logging frameworks. The
discussions and code examples presented in this tutorial should also be useful for many other logging
frameworks.

Typical Logging Use Cases

When developing Java application on SAP NetWeaver developer can choose to use Log4j, JCL or SAP’s
logging API. The different use cases are discussed in the following paragraphs.

Logging with Log4j / Apache Commons Logging (JCL)

Using Log4j or JCL on SAP NetWeaver does not require any SAP-specific adjustments. Simply place the
configuration files (i.e. the log4j.properties or commons-logging.properties files respectively)

together with the corresponding libraries (log4j-<version>.jar or commons-logging-<version>.jar) in

the build class path of your application. That is it! The examples in this tutorial use Log4j version 1.2.15 and
JCL version 1.1, which are the latest versions available at the time this tutorial was written.

Developers, who are either migrating existing Java applications to SAP NetWeaver or developing Java
applications for multiple platforms, will certainly do not want to use proprietary logging frameworks to keep
their applications platform independent. However, we will later show how to integrate these logging
frameworks into SAP’s logging API.

Logging with SAP’s Logging API

All SAP business solutions use SAP’s logging API to provide the log entries in one common format in one
central place. The log viewer within the SAP NetWeaver Administrator can access all log and trace files
centrally and provides comprehensive search and filter capabilities to find the relevant log entries quickly. It
is recommended that all applications running on SAP NetWeaver use SAP’s logging API. SAP’s logging

 Integrating 3
rd

 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 4

framework is integrated with the SAP Solution Manager, so that SAP support teams can access logs and
traces in urgent cases. For the certification of 3

rd
 party products through the SAP Integration and Certification

Center, the usage of SAP’s logging API is mandatory.

Switching from an existing logging framework to SAP’s logging API requires the instrumentation of the entire
source code, i.e. every logging API call needs to be changed. This is simply impractical and unfeasible.
Therefore the next paragraph discusses a more suitable solution.

Integrating Log4j / Apache Commons Logging into SAP’s Logging API

The goal of this paragraph is to show exemplary for Log4j and JCL, how 3
rd

 party logging frameworks can be
configured to use SAP’s logging framework, so that no code instrumentation is necessary. The key idea is to
provide a logging bridge for each logging framework that routes the log messages from the 3

rd
 party logging

framework to SAP’s logging API.

Logging Bridge for Log4j

The first step is to import the Log4j configuration file (log4j.properties) and the Log4j library (log4j-

<version>.jar) into a project within the SAP NetWeaver Development Studio and to include these files to

the build class path of your application. The next step is to configure Log4j, so that our logging bridge is used
as an Appender. Here is the content of the corresponding configuration file (log4j.properties):

Configuration of: 1) rootLogger Log-Level 2) Appenders

log4j.rootLogger=all, SAPLogging

#=== Configuration SAP Logging Appender ===

The appender class

log4j.appender.SAPLogging=com.sap.logging.bridge.log4j.SapLogAppender

Name of the SAP Logging Category under "Applications"

log4j.appender.SAPLogging.categoryName=MyCategory

Example configuration file for Log4j: log4j.properties.

Log4j arranges the different Loggers in a hierarchy. The configuration file above tells Log4j that the top-level
Logger (the rootLogger) should write all log messages to the Appender SAPLogging (line2). Line 7

defines the Appender SAPLogging by assigning a Java class to it (in this case the class SapLogAppender,

our logging bridge). The last line defines the parameter categoryName of our logging bridge. Please note

that this line does not belong to the Log4j configuration. We will use this parameter later, when we call the
SAP logging API to set the category of our log messages (within the top-level log category Application,

see above).

The property rootLogger determines the severity levels that are logged. The severity levels will be

explained later. We recommend to set this property to “all” and use the configuration capabilities of the log

viewer within the SAP NetWeaver Administrator to specify the severity level for all Java applications
centrally.

The next step is to map the severity level of log messages from Log4j to SAP’s logging framework. A severity
level is an integer value indicating the importance of the log message. Log4j defines the following severity
level (however, custom level can be added): FATAL, ERROR, WARN, INFO, DEBUG and TRACE. SAP’s logging

framework defines pretty similar severity levels that are explained here (-> “How to Write Log and Trace
Messages”; for Logging: -> “Logging” -> “Severities for Log Messages”; for Tracing: -> “Tracing” ->
“Severities for Trace Messages”). For our example logging bridge, we use the following severity level
mapping:

Log4j SAP logging framework

 Integrating 3
rd

 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 5

TRACE DEBUG (written to trace file)

DEBUG DEBUG (written to trace file)

INFO INFO (written to log file, category from Log4j configuration file)

WARN WARNING (written to log file, category from Log4j configuration file)

ERROR ERROR (written to log file, category from Log4j configuration file)

FATAL FATAL (written to log file, category from Log4j configuration file)

Custom level WARNING (written to log file, category from Log4j configuration file)

Example mapping of the severity level.

This means that the Log4j severity levels TRACE and DEBUG are mapped to the severity level DEBUG and the

tracing API of SAP’s logging framework is called. All other Log4J severity levels are mapped to the
corresponding severity levels in SAP’s logging framework, but the logging API is called instead. This
mapping was chosen, so that all log messages belong to the Category “MyCategory”, which is part of the

top-level category “Application”. So all log entries can easily found in the log view under the category

“MyCategory”.

Note that this mapping is just an example. Real world projects may use additional custom-defined severity
levels, which have to be mapped to the existing levels of SAP’s logging API. Furthermore, each severity level
must also be mapped to either the logging or the tracing API. This requires a good understanding of the
severity level semantics of both logging frameworks.

The relevant parts of Java code for the logging bridge is listed below. Most of this coding should be self-
explaining. Here we just explain the most relevant parts. The logging bridge is a Log4j Appender, so that the
corresponding interface (AppenderSkeleton) needs to be implemented. The only method that is called by

the Log4j framework is the append() method. The methods logToSap() and mapSeverity() are just

helpers to call SAP’s logging and tracing API as well as to map the severity level between the to logging
frameworks. Depending on the severity level, the logToSap() method calls either the tracing API (for the

severity level “debug”) or the logging API otherwise. The case statement in the logToSap() method

performs the actual severity level mapping. Both the calls of the logging/tracing APIs and the severity level
mapping may need to be adjusted in a Java development project. The property “categoryName”, which is

used to call SAP’s logging API, is set by the Log4j configuration.

package com.sap.logging.bridge.log4j;

import ...;

/**

 * By extending the AppenderSkeleton you're able to define your own

 * destination for the log4j log messages. This SapLogAppender writes the

 * log4j messages to the SAP logging API. The appender tries to routes the

 * messages to the SAP logging API by using the SAP API as it meant to be.

 */

public class SapLogAppender extends AppenderSkeleton {

 /** Name for the category under

 \System\Applications\<category_Name>" */

 private static String categoryName;

 /**

 * Writes the logging events of log4j to SAP logging API.

 *

 * @param event

 Integrating 3
rd

 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 6

 * log4j log event written to log4j logger

 */

 protected void append(LoggingEvent event) {

 // Text of the log4j message

 String msg = event.getMessage().toString();

 // The Throwable of this logging event (if there's one)

 Throwable ta = event.getThrowableInformation() == null

 ? null

 : event.getThrowableInformation().getThrowable();

 // map SAP logging Severity

 int severity = mapSeverity(event.getLevel());

 // write log message

 logToSap(event.getLoggerName(), msg, ta, severity);

 }

 private void logToSap(String loggerName,

 String msg,

 Throwable ta,

 int severity) {

 // Location for the SAP log messages

 Location loc = Location.getLocation(loggerName);

 Category cat = Category.getCategory(Category.APPLICATIONS,

 getCategoryName());

 // in case of a unknown severity -> set severity WARNING

 // and add information

 if (severity == -1) {

 severity = Severity.WARNING;

 msg += " (Couldn't identify severity of log4j-Logging

Event!)";

 }

 // log-level DEBUG will be written to default trace

 if (severity == Severity.DEBUG) {

 if (ta == null)

 loc.logT(severity, msg);

 else // for log messages with throwables

 loc.traceThrowableT(severity, msg, ta);

 // everything else will be written to the application.log

 // file in the configured category

 } else {

 if (ta == null)

 cat.logT(severity, loc, msg);

 else // for log messages with throwables

 cat.logThrowableT(severity, loc, msg, ta);

 }

 }

 /**

 * Maps log4j's level to SAP logging severity.

 *

 * @param level-object

 * of log4j-LoggingEvent

 * @return Mapped SAP severity; -1 for levels that couldn't be

 * mapped

 Integrating 3
rd

 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 7

 */

 private int mapSeverity(Level level) {

 switch (level.toInt()) {

 case Level.TRACE_INT:

 return Severity.DEBUG;

 case Level.DEBUG_INT:

 return Severity.DEBUG;

 case Level.INFO_INT:

 return Severity.INFO;

 case Level.WARN_INT:

 return Severity.WARNING;

 case Level.ERROR_INT:

 return Severity.ERROR;

 case Level.FATAL_INT:

 return Severity.FATAL;

 default: // unknown log level

 return -1;

 }

 }

 ...

}

Source code of the logging bridge for Log4j.

The following code is a little Log4j example application to test the logging. After obtaining a logger for the
class Log4jExampleUsages the method logSomething() simply calls the Log4j logging methods, i.e.

trace(), debug(), info() and so on.

package org.example.app;

import org.apache.log4j.Logger;

/**

 * Does some logging with log4j API for demonstration.

 */

public class Log4jExampleUsage {

 /** The log4j-Logger*/

 private static final Logger log4j =

 Logger.getLogger(Log4jExampleUsage.class);

 /**

 * Just some log4j log output.

 */

 public static void logSomething() {

 // traces

 log4j.trace("Log4j - trace-method");

 log4j.debug("Log4j - debug-method");

 log4j.debug(

 "Log4j - debug-method with exception",

 Integrating 3
rd

 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 8

 new NullPointerException("Developer's best friend."));

 //logs

 log4j.info("Log4j - info-method");

 log4j.warn("Log4j - warn-method");

 log4j.error("Log4j - error-method");

 log4j.fatal("Log4j - fatal-method");

 log4j.fatal(

 "Log4j - fatal-method with exception",

 new NullPointerException("Developer's best friend."));

 }

}

Example application to produce some Log4j log messages.

This JSP script finally calls the Log4j test application, i.e. the method logSomething():

...

<html>

<head>

<title>LOG4J to SAP LOGGING</title>

</head>

<body>

 <% org.example.app.Log4jExampleUsage.logSomething(); %>

 <h1>Log4j has written to SAP logging.</h1>

 <h1>Check your logs!</h1>

</body>

</html>

JSP that calls the example Log4j application.

After running the JSP script in a browser, the Log4j logs should be written to SAP’s logging framework. This
can be verified by the log viewer of the SAP NetWeaver Administrator.

Logging Bridge for Apache Commons Logging (JCL)

The integration of JCL into SAP’s logging framework is very similar to the integration of Log4j. As a first step
we need to configure the class that implements the JCL logging API. This can be done by the following JCL
configuration file (commons-logging.properties), which must be added to the build class path. It only

specifies that the class SapLogJclImpl implements the JCL logging API and shall be used for logging.

org.apache.commons.logging.Log=com.sap.logging.bridge.jcl.SapLogJclImpl

Example configuration file for JCL: commons-logging.properties.

In contrast to the Log4j example, the configuration file does not contain the category for SAP’s logging API.
For the sake of simplicity of our example the category name is hard-coded in the logging bridge, see below.
The next step is to define the severity level mapping between the two logging frameworks. Similar to the
Log4j example, we use the following mapping:

JCL method SAP logging framework

trace() DEBUG (written to trace file)

 Integrating 3
rd

 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 9

debug() DEBUG (written to trace file)

info() INFO (written to log file, category “MyCategory”)

warn() WARNING (written to log file, category “MyCategory”)

error() ERROR (written to log file, category “MyCategory”)

fatal() FATAL (written to log file, category “MyCategory”)

The log entries provided by the trace() and debug() JCL methods are mapped to the severity level

“debug”, while all other level are mapped to the corresponding severity level of SAP’s logging framework.

The source of the SapLogJclImpl class is shown below. The main methods that must be implemented are

the various logging methods trace(), debug(), info() and so on. All of them just map the severity level

and call the logToSap() method, which calls the SAP logging API.

package com.sap.logging.bridge.jcl;

import ...;

public class SapLogJclImpl implements Log, Serializable {

 private static final long serialVersionUID = 1377781809226327977L;

 Location loc;

 /** Name for the category under

 "\System\Applications\<category_Name>" */

 final String CATEGORY_NAME = "MyCategory";

 Category cat = Category.getCategory(Category.APPLICATIONS,

 CATEGORY_NAME);

 ...

 public SapLogJclImpl(String name) {

 loc = Location.getLocation(name);

 }

 public boolean isDebugEnabled() {

 return Severity.DEBUG >= loc.getEffectiveSeverity();

 }

...

 public void trace(Object msg) {

 logToSap(msg.toString(), null, Severity.DEBUG);

 }

 public void trace(Object msg, Throwable ta) {

 logToSap(msg.toString(), ta, Severity.DEBUG);

 }

 public void debug(Object msg) {

 logToSap(msg.toString(), null, Severity.DEBUG);

 }

 public void debug(Object msg, Throwable ta) {

 Integrating 3
rd

 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 10

 logToSap(msg.toString(), ta, Severity.DEBUG);

 }

 public void info(Object msg) {

 logToSap(msg.toString(), null, Severity.INFO);

 }

 ...

 private void logToSap(String msg, Throwable ta, int severity) {

 // in case of a unknown severity -> set severity WARNING

 // and add information

 if (severity == -1) {

 severity = Severity.WARNING;

 msg += " (Couldn't identify severity of log4j-Logging

Event!)";

 }

 // log-level DEBUG will be written to default trace

 if (severity == Severity.DEBUG) {

 if (ta == null)

 loc.logT(severity, msg);

 else // for log messages with throwables

 loc.traceThrowableT(severity, msg, ta);

 // everything else will be written to the application.log in

 // the configured category

 } else {

 if (ta == null)

 cat.logT(severity, loc, msg);

 else // for log messages with throwables

 cat.logThrowableT(severity, loc, msg, ta);

 }

 }

}

Source code of the logging bridge for JCL.

The source code of a JCL example application is listed below. After requesting a logger for the
JclExampleUsage class, the various JCL logging methods are called.

package org.example.app;

import ...;

/**

 * Does some logging with commons logging API for demonstration.

 */

public class JclExampleUsage {

 /** The JCL-Logger*/

 private static Log jcl = LogFactory.getLog(JclExampleUsage.class);

 /**

 * Just some commons logging log output.

 */

 public static void logSomething() {

 // traces

 Integrating 3
rd

 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 11

 jcl.trace("JCL - trace-method");

 jcl.debug("JCL - debug-method");

 jcl.debug(

 "JCL - debug-method with exception",

 new NullPointerException("Developer's best friend."));

 //logs

 jcl.info("JCL - info-method");

 jcl.warn("JCL - warn-method");

 jcl.error("JCL - error-method");

 jcl.fatal("JCL - fatal-method");

 jcl.fatal(

 "JCL - fatal-method with exception",

 new NullPointerException("Developer's best friend."));

 }

}

Example application to produce some JCL log messages.

The following JSP script call the logSomething() method of our JCL example application.

...

<html>

<head>

<title>COMMONS LOGGING to SAP LOGING</title>

</head>

<body>

 <% org.example.app.JclExampleUsage.logSomething(); %>

 <h1>Commons Logging has written to SAP logging.</h1>

 <h1>Check your logs!</h1>

</body>

</html>

JSP that calls the example JCL application.

As with the Log4j example, the logs and traces of this example application can be analyzed with the log
viewer within the SAP NetWeaver Administrator.

Run the Examples

The following steps are necessary to run the examples of this tutorial:

1. Download the file Logging_Tutorial.zip from SDN.

2. Unzip the content of the zip file into the workspace of the SAP NetWeaver Developer Studio or any
other local directory.

3. Download and unzip Log4j from here and Apache Commons Logging from here.

4. Copy the files “commons-logging-1.1.jar” and “log4j-1.2.15.jar” into the folder “<path

to the extracted zip file>\Logging_Tutorial\Logging_Tutorial_Web\lib”.

5. Start the SAP NetWeaver Developer Studio.

6. Switch to the Java EE perspective: “Window” -> “Open Perspective” -> “Other …” and select

“Java EE”.

7. Import the example projects

a. Select “File” -> “Import”.

 Integrating 3
rd

 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 12

b. Select the import resource: “Other” -> “Multiple Existing Projects into

Workspace” and press “Next”.

c. Browse to the folder “Logging_Tutorial”. The two subfolders

“Logging_Tutorial_Ear” and “Logging_Tutorial_Web” should be listed in the main

window.

d. Press “Select All” and “Finish”.

8. Build and deploy the imported projects

a. Right mouse click on the newly created project “Logging_Tutorial_Ear” and select “Run

As” -> “1 On the Server”.

b. In the wizard press “Next”, “Next”, select “Web browser” and press “Finish”.

c. The deployment may ask for a user and password. Enter “Administrator” and your

master password.

9. Test the logging bridges:

a. Start the logging applications:

i. Log4j: http://<host>:<port>/logging/log4j.jsp

ii. JCL: http://<host>:<port>/logging/jcl.jsp

b. Logon to the SAP NetWeaver Administrator: http://<host>:<port>/nwa.

c. Select “Problem Management” -> “Logs and Traces” -> “Log Viewer”.

d. Select “SAP Logs (Java)” to see the log entries or “Default Traces (Java)” to see

the traces.

10. Pitfalls:

a. If not all log or trace messages appear in the log viewer, set the log and trace levels to
“All”:

i. Within the log viewer select “Log Configuration” and then “Logging

Categories”. Change the log level for the category “Applications” ->

“MyCategory” to “All”.

ii. To see all traces select “Tracing Locations” and then navigate to “org” ->

“example” -> “app”. Set the log level of the two components “JclExampleUsage”

and “Log4jExampleUsage” to “All”.

b. If you use other versions (or more specifically other filenames) than log4j-1.2.15.jar or

commons-logging-1.1.jar, you need to add the different jar files manually in the build

path: right click on the “Logging_Tutorial_Web” project and select “Properties” in the

context menu. In the new window, choose “Java Build Path” and go to the tab

“Libraries”. Here you can add alternative versions of the two libraries.

Use the Logging Bridges in other Java Development Projects

If the examples of this tutorial are used in other Java development projects, the following steps are required
to integrate the Log4j framework into SAP’s logging framework:

• Copy the files “<path to the extracted zip
file\Logging_Tutorial\Logging_Tutorial_Web\src\com\sap\logging\bridge\log4

j\SapLogAppender.java” and “<path to the extracted zip
file\Logging_Tutorial\Logging_Tutorial_Web\WebContent\WEB-

INF\classes\log4j.properties” to your source folder.

• Add both files to your class path.

• Set the category name in the log4j.properties configuration file.

• Adjust the SapLogAppender class to your needs and add it to your class path.

 Integrating 3
rd

 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 13

To run the Apache Commons Logging framework:

• Copy the files “<path to the extracted zip
file\Logging_Tutorial\Logging_Tutorial_Web\src\com\sap\logging\bridge\log4

j\ SapLogJclImpl.java” and “<path to the extracted zip
file\Logging_Tutorial\Logging_Tutorial_Web\WebContent\WEB-

INF\classes\commons-logging.properties” to your source folder.

• Add both files to your class path.

• Set the category name in the commons-logging.properties configuration file.

• Adjust the SapLogJclImpl.java class to your needs and add it to your class path.

Known Limitations

If the logging bridges of this tutorial are used by a Java application, the timestamps for the log entries are set
by the SAP logging framework and not by the 3

rd
 party logging frameworks. This means that the timestamps

in the log entries contain the times the SAP logging framework has written the logs and not the times when
application wrote the logs.

Related Content

• Link to Johannes Hamel’s tutorial

• Link to the zip file

 Integrating 3
rd

 Party Java Logging Frameworks into SAP’s Logging Framework

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 14

Copyright

© Copyright 2007 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG.
The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400, iSeries, pSeries, xSeries,
zSeries, System i, System i5, System p, System p5, System x, System z, System z9, z/OS, AFP, Intelligent Miner, WebSphere,
Netfinity, Tivoli, Informix, i5/OS, POWER, POWER5, POWER5+, OpenPower and PowerPC are trademarks or registered trademarks of
IBM Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or registered trademarks of
Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium, Massachusetts
Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and implemented by
Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of SAP AG in Germany and in several other countries all over the world. All
other product and service names mentioned are the trademarks of their respective companies. Data contained in this document serves
informational purposes only. National product specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP AG and its affiliated companies ("SAP
Group") for informational purposes only, without representation or warranty of any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP Group products and services are those that are set forth in the
express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an
additional warranty.

These materials are provided “as is” without a warranty of any kind, either express or implied, including but not limited to, the implied
warranties of merchantability, fitness for a particular purpose, or non-infringement.

SAP shall not be liable for damages of any kind including without limitation direct, special, indirect, or consequential damages that may
result from the use of these materials.

SAP does not warrant the accuracy or completeness of the information, text, graphics, links or other items contained within these
materials. SAP has no control over the information that you may access through the use of hot links contained in these materials and
does not endorse your use of third party web pages nor provide any warranty whatsoever relating to third party web pages.

Any software coding and/or code lines/strings (“Code”) included in this documentation are only examples and are not intended to be
used in a productive system environment. The Code is only intended better explain and visualize the syntax and phrasing rules of
certain coding. SAP does not warrant the correctness and completeness of the Code given herein, and SAP shall not be liable for errors
or damages caused by the usage of the Code, except if such damages were caused by SAP intentionally or grossly negligent.

