
XORP Libxorp Library Overview

Version 1.2

XORP Project
International Computer Science Institute

Berkeley, CA 94704, USA
http://www.xorp.org/
feedback@xorp.org

March 8, 2006

1 Introduction

The libxorp library contains a set of classes for basic XORP functionality such as IP addresses and subnets,
timers, event loops, etc. It is used by virtually every otherXORP component, and its main purpose is to
simplify the implementation of those components.

1.1 Overview

Currently, the libxorp library contains the following classes and components (in alphabetical order):

• asnum.hh: class AsNum: A class for storing an AS number used by protocols such as BGP.

• asyncio.hh: class AsyncFileReader, class AsyncFileWriter: Asynchronous file transfer classes.

• buffer.hh: class Buffer: A class for storing buffered data.

• bufferedasyncio.hh: class BufferedAsyncReader: Buffered asynchronous file reader class.

• c format.hh: cformat(): A macro that creates a C++ string from a C-style printf(3)-formatted string.

• callback.hh, callbackdebug.hh, callbacknodebug.hh, safecallback obj.hh: Callback mechanism.

• clock.hh: class SystemClock: A class for providing the interface to obtain the system clock.

• config param.hh: template class ConfigParam: A class for storing a configuration parameter.

• debug.h: Provides facility for generating debug messages.

• ether compat.h: Ethernet manipulation compatibility functions.

• eventloop.hh: class EventLoop: Event loop class for coordinated operations between timers and I/O
operations on file descriptors.



• exceptions.hh: Standard XORP C++ exceptions.

• heap.hh: class Heap: Provides Heap data structure.

• ipnet.hh, ipv4net.hh, ipv6net.hh, ipvxnet.hh: class IPv4Net, class IPv6Net, class IPvXNet: Implemen-
tation of classes for basic subnet addresses (for IPv4, IPv6and dual IPv4/6 address family respec-
tively).

• ipv4.hh, ipv6.hh, ipvx.hh: class IPv4, class IPv6, class IPvX: Implementation of classes for basic IP
addresses (for IPv4, IPv6 and dual IPv4/6 address family respectively).

• mac.hh: class Mac, class EtherMac: Containers for MAC types.

• nexthop.hh: Classes that contain routing next-hop information.

• popen.hh: The interface for the local implementation ofpopen(2)andpclose(2).

• profile.hh: Implementation of a mechanism for event profiling.

• range.hh: class U32Range, class IPv4Range, class IPv4Range: A set of classes that implement linear
ranges (e.g.,integers or addresses).

• ref ptr.hh: template class refptr: Reference counted pointer class.

• ref trie.hh: Implementation of a trie to support route lookups. Based ontrie.hh, but with reference-
counted storage supporting delayed deletion.

• run command.hh: class RunCommand: A class for running an external command.

• safecallback obj.hh, class CallbackSafeObject: Implementation of a base class for objects that are
callback safe.

• selector.hh: I/O multiplexing interface.

• service.hh: Provides base for asynchronous service classes.

• statuscodes.h: Process states status codes used by processes when reporting their operational status
to the router manager.

• time slice.hh: class TimeSlice: A class for computing whether some processing is taking toolong.

• timer.hh, class XorpTimer: XORP timer facility.

• timespent.hh: class TimeSpent: A class used for debugging purpose to find code that has takentoo
long to execute.

• timeval.hh: class TimeVal: A class for storing time values (similar tostruct timeval).

• tlv.hh, class Tlv: Facility for reading and writing TLV (Type-Lenght-Value)records.

• token.hh: Token related definitions.

• transactions.hh: Facility for transaction operations.

2



• trie.hh: Implementation of a trie to support route lookups.

• utility.h: Contains various mini-utilities (mostly compiler-related helpers).

• utils.hh: Contains various utilities (e.g.,to delete a list or array of pointers and the objects pointed to).

• vif.hh: class Vif, class VifAddr: Virtual interface and virtual interface address classes.

• xlog.h: Provides facility for log messages generation.

• xorp.h: The XORP main include file that should be included by all XORPC and C++ files.

• xorpfd.hh: class XorpFd: Implementation of a wrapper class used to encapsulate a filedescriptor.

Each of the components is described in Section 2.

2 Components Description

This section contains a brief description of each of the components of thelibxorp library. This description is
for informative purpose only. The source code for each component is the ultimate source for programming
reference, and implementation details.

2.1 asnum.hh

This file containsclass AsNum: a class for storing an AS number used by protocols such as BGP. This class
can be used to store an AS number that can be either 16 or 32 bits. Originally, the AS numbers were defined
as 16-bit unsigned numbers. Later the “extended” AS numberswere introduced, which are unsigned 32-bit
numbers.

2.2 asyncio.hh

This file contains asynchronous file transfer classes. Theseutilize XORP EventLoop and its SelectorList
to read or write files asynchronously. The user creates an AsyncFile{Reader,Writer} and adds a buffer for
reading or writing with addbuffer(). A callback provided with each buffer is called every time I/O happens
on the buffer. Reading or writing only begins when start() iscalled, and normally continues until there are
no buffers left.

From the developer’s point of view, the following classes are of interest:class AsyncFileReader, class
AsyncFileWriter.

2.3 buffer.hh

This file containsclass Buffer: a class for conveniently storing and accessing buffered data. Currently it has
limited applicability.

2.4 buffered asyncio.hh

This file containsclass BufferedAsyncReader: a class for buffered asynchronous file reading. Unlike the
class AsyncFileReader(see Section 2.2) which delivers data whenever it is available, theclass BufferedAsyn-
cReaderbuffers the data and delivers it whenever its size has reached a predefined threshold.

3



2.5 c format.hh

This file containsc format(): a macro that creates a C++ string from a C-style printf(3)-formatted string. It
takes the same arguments as printf(3), but %n is illegal and will cause abort to be called.

In practice,c format() is a nasty macro, but by doing this we can check the compile time arguments are
sane and the run time arguments.

2.6 callback.hh, callbackdebug.hh, callbacknodebug.hh, safecallback obj.hh

These files contain an implementation of a callback mechanism. XORP is an asynchronous programming
environment and as a result there are many places where callbacks are useful. Callbacks are typically
invoked to signify the completion or advancement of an asynchronous operation.

XORP provides a generic and flexible callback interface thatutilizes overloaded templatized functions
for generating callbacks in conjunction with many small templatized classes. Whilst this makes the syntax
a little unpleasant, it provides a great deal of flexibility.

XorpCallback objects are objects created by the callback()function which returns a reference pointer to
a newly created callback object. The callback is invoked by calling the dispatch() method on that object.

There are two versions of the callback mechanism: debug and non-debug version. The debug version
includes additional information with each callback (e.g.,file name and line number where the callback was
invoked), records callback tracing events, etc, but creates additional overhead to the system. Non-debug
callbacks are used by default; the debug callbacks can be enabled by definingDEBUG CALLBACKbefore
includingcallback.hh, or by running./configure –enable-callback-debugbefore compiling XORP.

For more details on the callback mechanism, and for usage examples, see the beginning ofcallback debug.hh
or callback nodebug.hh. Note that these files are auto-generated bycallback-gen.py(a Python script), there-
fore they should never be edited.

2.7 clock.hh

This file contains the implementation ofclass SystemClockthat provides the interface for obtaining the
system clock.

2.8 configparam.hh

This file contains the implementation oftemplate class ConfigParam: a class for storing a configuration
parameter.

This class can be used to store the value of a configuration parameter. Such parameter has a current and
a default value. TheConfigParamclass has the facility to add a callback that is invoked whenever the value
of the configuration parameter is changed.

2.9 debug.h

This file provides facility for debug messages generation. More specifically, it defines thedebug_msg(),
the macro responsible for generating debug messages. It takes the same arguments as printf(3). For example:

debug_msg("The number is %d\n", 5);

For more details see the comments inside that file.

4



2.10 ethercompat.h

This file contains Ethernet-related manipulation compatibility functions. For example, it includes the appro-
priate system files, and declares functionsether_aton() andether_ntoa() (implemented locally in
ether compat.c) if the system is missing the correspondingether_aton(3) andether_ntoa(3).

2.11 eventloop.hh

This file definesclass EventLoop. It is used to co-ordinate interactions between a TimerListand a Se-
lectorList for XORP processes. All XorpTimer and select operations should be co-ordinated through this
interface.

2.12 exceptions.hh

This file containsclass XorpException: a base class for XORP C++ exceptions. It contains also all standard
XORP C++ exceptions. An example of such exception isclass InvalidFamilywhich is thrown if the address
family is invalid (for example, by an IPvX constructor when invoked with an invalid address family).

2.13 heap.hh

This file containsclass Heap. The Heap class is used by the TimerList class as it’s priority queue for timers.
This implementation supports removal of arbitrary objectsfrom the heap, even if they are not located at the
top.

2.14 ipnet.hh, ipv4net.hh, ipv6net.hh, ipvxnet.hh

These files contain the declaration of the following classes: class IPv4Net, class IPv6Net, class IPvXNet,
which are classes for basic subnet addresses (for IPv4, IPv6and dual IPv4/6 address family respectively).
IPvXNet can be used to store a subnet address that has either IPv4 or IPv6 address family.

Most of the implementation is contained in fileipnet.hh, which contains atemplate class IPNet. The
IPv4Net, IPv6Net, and IPvXNet classes are derived from thattemplate.

2.15 ipv4.hh, ipv6.hh, ipvx.hh

These files contain the declaration for the following classes: class IPv4, class IPv6, class IPvX, which are
classes for basic IP addresses (for IPv4, IPv6 and dual IPv4/6 address family respectively). IPvX can be
used to store an address that has either IPv4 or IPv6 address family.

2.16 mac.hh

This file declares the following classes:class Mac, class EtherMac. The first class is a generic container for
any type of MAC. The second class is a container for Ethernet MAC address.

2.17 nexthop.hh

This file declares a number of classes that can be used to contain routing next-hop information. For example,
class NextHopis the generic class for holding information about routing next hops. NextHops can be of
many types, including immediate neighbors, remote routers(with IBGP), discard interfaces, encapsulation

5



endpoints, etc. NextHop itself doesn’t really do anything useful, except to provide a generic handle for the
specialized subclasses. The specialized subclasses are:

• IPPeerNextHop is for next hops that are local peers.

• IPEncapsNextHop is for “next hops” that are non-local, and require encapsulation to reach. An ex-
ample is the PIM Register Encapsulation.

• IPExternalNextHop An IP nexthop that is not an intermediateneighbor.

• DiscardNextHop is a discard interface.

2.18 popen.hh

This file contains the interface for the local implementation of popen(2)andpclose(2). The corresponding
local names arepopen2()and pclose2()respectively. Unlike the system’spopen(2), the localpopen2()
implementation allows the user to specify the streams wherethestdoutandstderr of the command will be
redirected to.

2.19 profile.hh

This file implements the mechanism for event profiling. The developer can add profiling entries at various
places of the program. Each profiling entry has a name and it can be enabled or disabled. In addition, a
number of strings can be added to each profiling entry, and those strings can be read at some later stage.

2.20 range.hh

This file implements the following classes:class U32Range, class IPv4Range, class IPv4Range.
Those classes implement linear ranges X..Y (e.g.,for integers or addresses). A linear range is defined

by its low and high inclusive boundaries. It is the user’s responisibility to ensure that the condition (low≤
high) always holds.

2.21 ref ptr.hh

This file declarestemplate class refptr: reference counted pointer class.
The refptr class is a strong reference class. It maintains a count ofhow many references to an object ex-

ist and releases the memory associated with the object when the reference count reaches zero. The reference
pointer can be dereferenced like an ordinary pointer to callmethods on the reference counted object.

At the time of writing the only supported memory management is through the new and delete operators.
At a future date, this class should support the STL allocatorclasses or an equivalent to provide greater
flexibility.

2.22 ref trie.hh

This file implements a trie to support route lookups. The implementation is template-based, and is based
on the code in trie.hh. From deleloper’s point of view, templates RefTrie, RefTrieNode, RefTriePreOrderIt-
erator, and RefTriePostOrderIterator are the most important. Those templates should be invoked with two
classes, the basetype “A” for the search Key (which is a subnet, IPNet<A>), and the Payload.

6



RefTrie differs from Trie (and its associated classes) in that the RefTrieNode includes a reference count
of how many RefTrieIterators are pointing at it. If a RefTrieNode is deleted, but has a non-zero reference
count, deletion will be delayed until the reference count becomes zero. In this way, additions and dele-
tions to the RefTrie cannot cause a RefTriePreOrderIterator or RefTriePostOrderIterator to reference invalid
memory, although a deletion and subsequent addition can cause the payload data referenced by an iterator
to change.

2.23 run command.hh

This file implementsclass RunCommandwhich provides the mechanism for running an external command.
In addition to the command name and its arguments, the developer can specify three callbacks:

• stdoutcb: the callback to call when there is data on the standard output.

• stderr cb: the callback to call when there is data on the standard error.

• donecb: the callback to call when the command is completed.

2.24 safecallback obj.hh

This file declares classCallbackSafeObject. Objects that wish to be callback safe should be derived from
this class. When a CallbackSafeObject is destructed it informs all the callbacks that refer to it that this is the
case and invalidates (sets to null) the object they point to.

2.25 selector.hh

This file contains the I/O multiplexing interface. The particular class of interest isclass SelectorList.
A SelectorList provides an entity where callbacks for pending I/O operations on file descriptors may be

registered. The callbacks are invoked when one of the selectmethods is called and I/O is pending on the
particular descriptors.

2.26 service.hh

This declaresclass ServiceBase. A service is a class that can be started and stopped and wouldtypically
involve some asynchronous processing to transition between states. The base class provides a state model
and methods for transitioning between states. Mandatory transition methods, like start and stop, are abstract
in the base class.

2.27 statuscodes.h

This file contains the enumeratedProcessStatuscodes that a XORP process should report to the XORP router
manager (rtrmgr) [1]. The file itself contains a detailed explanation of the process states (valid transaction
between states, triggering events, actions, etc).

2.28 time slice.hh

This file declaresclass TimeSlice. This class can be used to compute whether some processing istaking too
long time to complete. It is up to the program that uses TimeSlice to check whether the processing is taking
too long, and suspend processing of that task if necessary.

7



2.29 timer.hh

This file declares the XORP timer facility. The only class of interest from a developer’s point of view is
class XorpTimer.

2.30 timespent.hh

This files declares and implementsclass TimeSpent. This class used for debugging purpose to find code that
has taken too long to execute.

2.31 timeval.hh

This file contains implementation ofclass TimeValfor storing time values (similar tostruct timeval). TimeVal
implements the appropriate constructors and numerous helper methods (e.g.,Less-Than and Addition oper-
ators, etc).

2.32 tlv.hh

This file contains the implementation ofclass Tlvfor reading and writing TLV (Type-Lenght-Value) records
from/to a file. The records are stored in network byte order format.

2.33 token.hh

This file contains various token-related definitions. Tokenis a sequence of symbols separated from other
tokens by some pre-defined symbols. In this implementation,the separators are the isspace(3) and ’—’
characters. The facilities in that file are to copy tokens, removing them from a token line, etc. Currently,
this file is used only by the CLI, therefore in the future it maybe moved to the CLI itself.

2.34 transactions.hh

This file contains facility for transactions. A transactionconsists of a sequence of transaction operations,
each of which is a command. The TransactionManager class provides a front-end for creating, dispatching,
and destroying transactions.

2.35 trie.hh

This file implements a trie to support route lookups. The implementation is template-based. From deleloper’s
point of view, templates Trie, TrieNode, TriePreOrderIterator, and TriePostOrderIterator are the most im-
portant. Those templates should be invoked with two classes, the basetype “A” for the search Key (which is
a subnet,IPNet<A>), and the Payload.

2.36 utility.h

This file contains various mini-utilities. Those utilitiesare mostly compiler-related helpers;e.g.,compile-
time assertion,UNUSED(var)macro to suppress warnings about unused functions arguments, etc.

8



2.37 utils.hh

This file contains various helper utilities. Currently, theonly two utilities are template functions to delete a
list or array of pointers and the objects pointed to.

2.38 vif.hh

This file declares the following classes:class Vif, class VifAddr.
Class Vif holds information about a virtual interface. A Vifmay represent a physical interface, or may

represent more abstract entities such as the Discard interface, or a VLAN on a physical interface. VifAddr
holds information about an address of a virtual interface. Avirtual interface may have more than one
VifAddr.

2.39 xlog.h

This file provides facility for log messages generation, similar to syslog. The log messages may be output
to multiple output streams simultaneously. Below is a description of how to use the log utility.

• The xlog utility assumes thatXORP_MODULE_NAME is defined (per module). To do so, you must
have in your directory a file like “foomodule.h”, and inside it should contain something like:

#define XORP_MODULE_NAME "BGP"

This file then has to be included by each *.c and *.cc file, and MUST be the first of the included local
files.

• Before using the xlog utility, a program MUST initialize it first (think of this as the xlog constructor):

int xlog_init(const char *process_name, const char *preamble_message);

Further, if a program tries to use xlog without initializingit first, the program will exit.

• To add output streams, you MUST use one of the following (or both):

int xlog_add_output(FILE* fp);
int xlog_add_default_output(void);

• To change the verbosity of all xlog messages, use:

xlog_set_verbose(xlog_verbose_t verbose_level);

where “verboselevel” is one of the following (XLOG_VERBOSE_MAX excluded):

typedef enum {
XLOG_VERBOSE_LOW = 0, /* 0 */
XLOG_VERBOSE_MEDIUM, /* 1 */
XLOG_VERBOSE_HIGH, /* 2 */
XLOG_VERBOSE_MAX

} xlog_verbose_t;

9



Default value isXLOG_VERBOSE_LOW (least details). Larger value for “verboselevel” adds more
details to the preamble message (e.g., file name, line number, etc, about the place where the log
message was initiated).

Note that the verbosity level of message typeXLOG_LEVEL_FATAL (see below) cannot be changed
and is always set to the most verbose level (XLOG_VERBOSE_HIGH).

• To change the verbosity of a particular message type, use:

void xlog_level_set_verbose(xlog_level_t log_level,
xlog_verbose_t verbose_level);

where “log level” is one of the following (XLOG_LEVEL_MAX excluded):

typedef enum {
XLOG_LEVEL_FATAL = 0, /* 0 */
XLOG_LEVEL_ERROR, /* 1 */
XLOG_LEVEL_WARNING, /* 2 */
XLOG_LEVEL_INFO, /* 3 */
XLOG_LEVEL_TRACE, /* 4 */
XLOG_LEVEL_MAX

} xlog_level_t;

Note that the verbosity level of message typeXLOG_LEVEL_FATALcannot be changed and is always
set to the most verbose level (XLOG_VERBOSE_HIGH).

• To start the xlog utility, you MUST use:

int xlog_start(void);

• To enable or disable a particular message type, use:

int xlog_enable(xlog_level_t log_level);
int xlog_disable(xlog_level_t log_level);

By default, all levels are enabled. Note thatXLOG_LEVEL_FATAL cannot be disabled.

• To stop the logging, use:

int xlog_stop(void);

Later you can restart it again byxlog_start()

• To gracefully exit the xlog utility, use

int xlog_exit(void);

10



(think of this as the xlog destructor).

Below is an example of using the XLOG facility:

int
main(int argc, char *argv[])
{

//
// Initialize and start xlog
//
xlog_init(argv[0], NULL);
xlog_set_verbose(XLOG_VERBOSE_LOW); // Least verbose messages
// Increase verbosity of the error messages
xlog_level_set_verbose(XLOG_LEVEL_ERROR, XLOG_VERBOSE_HIGH);
xlog_add_default_output();
xlog_start();

// Do something

//
// Gracefully stop and exit xlog
//
xlog_stop();
xlog_exit();

exit (0);
}

Typically, a developer would use the macros described belowto print a message, add an assert statement,
place a marker, etc. If a macro accepts a message to print, theformat of the message is same as printf(3).
The only difference is that the xlog utility automatically adds’\n’, (i.e. end-of-line) at the end of each
string specified byformat:

• XLOG_FATAL(const char *format, ...)
Write a FATAL message to the xlog output streams and abort theprogram.

• XLOG_ERROR(const char *format, ...)
Write an ERROR message to the xlog output streams.

• XLOG_WARNING(const char *format, ...)
Write a WARNING message to the xlog output streams.

• XLOG_INFO(const char *format, ...)
Write an INFO message to the xlog output streams.

• XLOG_TRACE(int cond_boolean, const char *format, ...)
Write a TRACE message to the xlog output stream, but only ifcond_boolean is not 0.

11



• XLOG_ASSERT(assertion)
The XORP replacement for assert(3), except that it cannot beconditionally disabled and logs error
messages through the standard xlog mechanism. It callsXLOG_FATAL() if the assertion fails.

• XLOG_UNREACHABLE()
A marker that can be used to indicate code that should never beexecuted.

• XLOG_UNFINISHED()
A marker that can be used to indicate code that is not yet implemented and hence should not be run.

2.40 xorp.h

This is the XORP main include file that should be included by all XORP C and C++ files. This file itself
includes a number of frequently used system header files, defines several commonly used values, etc.

2.41 xorpfd.hh

This file contains the implementation ofclass XorpFdused to encapsulate a file descriptor.
It exists because of fundamental differences between UNIX and Windows in terms of how the two

families of operating systems deal with file descriptors; inmost flavours of UNIX, all file descriptors are
created equal, and may be represented using an ’int’ type which is usually 32 bits wide. In Windows,
sockets are of type SOCKET, which is a typedef alias of uint; whereas all other system objects are of type
HANDLE, which in turn is a typedef alias of ’void *’.

A Modification History

• December 11, 2002: Version 0.1 completed.

• March 10, 2003: Updated to match XORP version 0.2 release code; add information about RefTrie;
cleanup.

• June 9, 2003: Updated to match XORP version 0.3 release code.

• August 28, 2003: Updated to match XORP version 0.4 release code.

• November 6, 2003: Updated to match XORP version 0.5 release code.

• July 8, 2004: Updated to match XORP version 1.0 release code.

• April 13, 2005: Updated to match XORP version 1.1 release code: added information forbufferedasyncio.hh,
clock.hh, popen.hh, profile.hhandrun command.hh.

• March 8, 2006: Updated to match XORP version 1.2 release code: added information forrange.hh,
tlv.hhandxorpfd.hh.

References

[1] XORP Router Manager Process (rtrmgr). XORP technical document. http://www.xorp.org/.

12


