
XORP Multicast Forwarding Engine Abstraction

Version 1.3

XORP Project
International Computer Science Institute

Berkeley, CA 94704, USA
http://www.xorp.org/
feedback@xorp.org

August 2, 2006

1 Introduction

1.1 Overview

This document provides an overview of the XORP Multicast Forwarding Engine Abstraction (MFEA). It is
intended to provide a starting point for software developers who wish to modify this software.

The main purpose of the MFEA is to abstract the underlying system and the multicast forwarding engine,
and to provide a consistent interface to multicast-relatedmodules such as PIM and MLD/IGMP. Thus, if we
want to use PIM and MLD/IGMP on different OS platform or hardware, we would have to modify the
MFEA only. In addition, all the complexity associated with network sockets, sending and receiving packets,
and so on are moved away from the protocol modules. This eliminates code duplication, and reduces greatly
the development overhead associated with protocol-independent issues when implementing a new protocol.
Finally, if we want to use PIM and MLD/IGMP in a simulation-like environment, it will be sufficient to add
the simulation environment support only to the MFEA.

Currently (August 2006), the MFEA supports abstraction forthe following systems:

• DragonFlyBSD, FreeBSD, NetBSD, and OpenBSD

• Linux

In the future, the MFEA will support simulation environment, and abstraction for Click [1] forwarding
path1. Support for other systems will be added on-demand if there are available resources.

Note that typically the MFEA would be part of the unicast FEA process [2], though logically it is a
separate entity. However, if someone wants to run the MFEA asa separate process, it requires very small
development effort to do this because of the logical separation between the FEA and the MFEA.

1Currently (August 2006) Click does not support multicast yet.

1



1.2 Acronyms

Acronyms used in this document:

• FEA: ForwardingEngineAbstraction

• MFC : MulticastForwardingCache: another name for an entry in the multicast forwarding engine
(typically used on UNIX systems).

• MFEA : MulticastForwardingEngineAbstraction

• MLD/IGMP : MulticastL istenerDiscovery/InternetGroupManagementProtocol

• PIM-SM : Protocol IndependentMulticast–SparseMode

• RIB : Routing InformationBase

1.3 MFEA Design Architecture Overview

Add/delete MFC

MfeaConfig

MfeaDft

MfeaVif MfeaVif ...

Set/get configuration

MfeaNode

...ProtoComm ProtoComm ProtoComm

Add/delete dataflow monitor

User space

Kernel space

Join/leave multicast group

Control the multicast Send/receive protocol messages,
join/leave multicast groupsrouting engine, install

dataflow monitors, etc.

MfeaMrouter

Receive kernel
upcall signals,
get statistics, etc.

Start/stop protocol per vif Receive dataflow signals

Receive kernel signals

Propagate vif info to
multicast protocols

Add/delete/start/stop protocol

Send/receive protocol message

Receive vif info (from FEA)

Figure 1: MFEA design overview

2



Figure 1 provides a general overview of the MFEA components.For each component there is a C++
class with exactly the same name. The main components are briefly described below:

• MfeaNode: a representation of a single MFEA unit (e.g., as part of a virtual multicast router). Typi-
cally, there would be a single MfeaNode per multicast router.

• MfeaVif: MFEA-specific virtual (network) interface that is used to keep state per network interface.

• MfeaConfig: contains MFEA-specific configuration.

• MfeaDft: table with dataflow-related information for estimating thebandwidth per dataflow.

• ProtoComm: per-protocol UNIX-specific unit for communication with theunderlying system.

• MfeaMrouter: unit for multicast-related communication with the underlying system.

Those components are described in details in Section 2. For information about the interaction between
the MFEA and other modules see [3].

2 Components Description

2.1 MfeaNode Description

MfeaNode is a representation of a single MFEA unit (e.g., as part of a virtual multicast router). Typically,
there would be a single MfeaNode per multicast router. However, in some cases a multicast router may
have more than one MFEA units. For example, it could have one MfeaNode for IPv4, and another one for
IPv6 multicast routing. Further, if we want to run MFEA in a simulation environment, each multicast router
within that simulation will have a single MfeaNode.

From a developer’s point of view, MfeaNode contains all the state related to the MFEA unit, and exports
the front-end interface to interact with that unit. For example, MfeaNode contains the methods to start/stop
or configure the MFEA, or to send/receive protocol control packets (e.g., PIM or MLD/IGMP) to/from the
unit. Those methods are described in the following files:

• mfea/mfea_node.hh

• libproto/proto_node.hh

• libproto/proto_unit.hh

MfeaNode provides the following abstraction to the multicast-related modules such as PIM and MLD/IGMP:

• Interface to add/delete/start/stop a protocol within the MFEA and the underlying system.

• Interface to send or receive protocol packets through the underlying system.

• Interface to receive (kernel) upcalls/signals from the underlying system, and to forward those signals
to the multicast-related modules that are interested in receiving those signals. Examples of such
signals in case of UNIX kernel are NOCACHE or WRONGVIF/WRONGMIF: the former one is sent
when the underlying multicast forwarding engine has no multicast forwarding entry for a multicast
packet; the latter one is sent when a multicast data packet has arrived on an interface that is not the
expected incoming interface to forward that data packet.

3



• Interface to add/delete dataflow monitors, to monitor network bandwidth per dataflow, and to send
the appropriate signals to the interested multicast-related modules. For example, the PIM-SM module
might be interested to know when the bandwidth of a given dataflow becomes zero, or is above a
threshold.

• Interface to inform the multicast-related modules about the available virtual interfaces (e.g., network
interfaces, tunnels, etc.) on the system, and to inform themabout any changes on those interfaces
(e.g., interface going DOWN, network address change, etc.).

• Interface to join or leave a multicast group.

• Interface to add/delete MFC entries,i.e., entries to the multicast forwarding engine.

MfeaNode itself does not implement the mechanisms to communicate with the multicast-related mod-
ules (e.g., to send or receive control packets to/from the PIM module). Those mechanisms are outside the
scope of MfeaNode, and must be implemented separately.

MfeaNode contains several pure virtual methods (e.g., dataflow_signal_send() is used to send
multicast dataflow-related signals to a multicast-relatedmodule that is interested in tracking dataflow-related
conditions) that must be implemented by a class that inherits MfeaNode. For example, XrlMfeaNode is
a class that uses MfeaNode as a base class; XrlMfeaNode uses XRL-based communication mechanisms
between MfeaNode and other XORP components such as the PIM and MLD/IGMP modules.

By default, MfeaNode is disabled; therefore, on startup it must be enabled explicitly.

2.2 MfeaVif Description

MfeaVif is a MFEA-specific virtual (network) interface thatis used to keep various state per interface. Typ-
ically, there would be one MfeaVif per network interface such as physical interface, tunnel, or the loopback
interface. In addition, there is one special MfeaVif: the PIM Register virtual interface that is used for sending
and receiving PIM Register packets2.

One of the purposes of MfeaVif is to keep various informationabout each network interface available on
the system: network and subnet address, is the interface up or multicast-capable, and so on. This information
is obtained from the FEA (the only exception is the PIM Register vif which is created internally by the
MFEA), and is used by the MFEA to keep track of any changes to aninterface (e.g., an alias address has
been added/deleted, etc). If there is a change to an interface, those changes are saved locally by the MFEA,
and then the MFEA informs all protocol modules that are registered by the MFEA.

Another purpose of MfeaVif is to keep track of the multicast groups that have been joined per interface.
For example, if a multicast-related module that uses the MFEA joins a multicast group on an interface, the
MFEA uses the appropriate system call to join the group on thespecified interface, and at the same time
it would keep the appropriate state on the corresponding MfeaVif. Thus, if another module joins exactly
same multicast group on that interface, but later one of those modules leaves that group, the MFEA would
modify only the appropriate state in MfeaVif, but will not use a system call to leave the multicast group on
the interface.

Typically, from developer’s point of view, all interactions with MfeaVif would be through MfeaNode3.

2In the future, the PIM Register MfeaVif interface may not be part of the MFEA anymore, because it is strictly PIM-specific.
3For simplicity, currently (August 2006) there are few occasions when XrlMfeaNode uses direct access to MfeaVif.

4



The public interface for MfeaVif contains the methods to manipulate a virtual (network) interface. Those
methods are to start/stop/enable/disable a virtual interface, and to configure it. The methods are described
in the following files:

• mfea/mfea_vif.hh

• libxorp/vif.hh

• libproto/proto_unit.hh

By default, each MfeaVif is disabled; therefore, on startupit must be enabled explicitly.

2.3 MfeaConfig Description

MfeaConfig handles the MFEA-specific configuration4. This configuration is used to configure the follow-
ing units:

• MfeaNode: how often to read the unicast forwarding table, default routing metrics and metric prefer-
ences to assign to each route, etc.

2.4 MfeaDft Description

Some protocols such as PIM-SM need the bandwidth of multicast data flows to be monitored: if the band-
width of a specific data flow (defined by a source and a group address) is above or below a pre-defined
threshold (defined per data flow), the protocol should be informed. For example, if the bandwidth of a data
flow is zero for some predefined amount of time, the corresponding multicast routing entry in the multicast
routing protocol module might be deleted (as well as the corresponding multicast forwarding entry in the
multicast forwarding engine). Another example is the Shortest-Path Tree switch in case of PIM-SM: the
SPT switch is triggered if the bandwidth from a specific source is above a pre-configured threshold.

If the multicast forwarding engine in the underlying systemdoes support bandwidth dataflow moni-
toring, then any addition or deletion of a dataflow monitor tothe MFEA translates to a system call to the
underlying system, and the MFEA itself does not need to keep any state. However, if the underlying system
does not support bandwidth dataflow monitoring, then the MFEA needs to implement that on its own. In
case of UNIX kernel for example, the kernel supports an ioctl() system call to obtain the number of octets
and packets forwarded so far on an existing MFC entry. Thus, if the MFEA reads this information twice, it
can compute the data bandwidth between the two readings.

The purpose of the MfeaDft table is to keep state about the dataflows the MFEA is monitoring (only
in the case the underlying system does not support bandwidthdataflow monitoring). For each entry in
MfeaDft, the MFEA periodically reads the bandwidth forwarding statistics from the underlying system.
If the forwarded bandwidth satisfies the pre-defined condition for that dataflow, the MFEA originates a
dataflow signal to the module that has installed that dataflowmonitoring entry. This signal is delivered
every time the pre-defined condition is true (until the entryis explicitly deleted by the module that installed
it).

4Currently (August 2006), MfeaConfig is not implemented; rather, all state is kept inside MfeaNode instead.

5



2.5 ProtoComm Description

ProtoComm is a per-protocol unit for communication with theunderlying system.
ProtoComm implements various methods that use the appropriate system calls to open or close a socket

per protocol, to send or receive protocol packets, to join orleave a multicast group (per protocol per inter-
face), and so on. Typically, there is a single ProtoComm entry per protocol;e.g., one ProtoComm for PIM,
another one for IGMP (or MLD in case of IPv6), etc. When a protocol module registers a network protocol
with MFEA, the corresponding ProtoComm for that protocol iscreated (if it did not exist).

Each ProtoComm entry is also used to keep information about various protocol preferences:e.g.,
whether a protocol module instance is interested in receiving various kernel upcall signals, etc.

2.6 MfeaMrouter Description

MfeaMrouter is an unit used for multicast-related communication with the underlying system. For example,
MfeaMrouter is used for the following tasks (this list may not be complete):

• Start/stop the multicast forwarding engine.

• Add/delete an interface used for multicast forwarding by the underlying system.

• Add/delete a MFC entry within the multicast forwarding engine.

• Install dataflow monitors (only if the underlying system supports that feature).

• Read data bandwidth forwarding statistics per dataflow (only if the underlying system does not support
bandwidth dataflow monitoring and upcall).

MfeaMrouter is started when MfeaNode is started, and usually stops operation when MfeaNode is
stopped.

A Modification History

• December 11, 2002: Initial version 0.1 completed.

• March 10, 2003: Updated to match XORP release 0.2.

• June 9, 2003: Updated to match XORP release 0.3: changes related to the MFEA–FEA merging, and
refactoring of some of the MFEA internals.

• August 28, 2003: Updated the version to 0.4, and the date.

• November 6, 2003: Updated the version to 0.5, and the date.

• July 8, 2004: Updated to match XORP release 1.0.

• January 27, 2005: Removed MRIB-related text, because the MFEA does not deal with the MRIB
information anymore.

• April 13, 2005: Updated to match XORP release 1.1.

• March 8, 2006: Updated the version to 1.2, and the date.

• August 2, 2006: Updated the version to 1.3, and the date.

6



References

[1] The Click Modular Router Project. http://www.read.cs.ucla.edu/click/.

[2] XORP Forwarding Engine Abstraction. XORP technical document. http://www.xorp.org/.

[3] XORP Multicast Routing Design Architecture. XORP technical document. http://www.xorp.org/.

7


