
XORP Routing Information Base (RIB) Process

Version 1.4

XORP Project
International Computer Science Institute

Berkeley, CA 94704, USA
http://www.xorp.org/
feedback@xorp.org

March 20, 2007

1 Introduction

This document provides an overview of the XORP Routing Information Base (RIB) process. It is intended
to provide a starting point for software developers wishingto understand or modify this software.

The RIB process takes routing information from multiple routing protocols, stores these routes, and
decides which routes should be propagated on to the forwarding engine. The RIB performs the following
tasks:

• Stores routes provided by the routing protocols running on aXORP router.

• If more than one routing protocol provides a route for the same subnet, the RIB decides which route
will be used.

• The winning unicast routes are propagated to the ForwardingEngine Abstraction (FEA) process and
hence on to the forwarding engine. Multicast routes are not propagated to the FEA - they are only
used to provide topology information to multicast routing protocols.

• Protocols such as BGP may supply to the RIB routes that have a nexthop that is not an immediate
neighbor. Such nexthops are resolved by the RIB so as to provide a route with an immediate neighbor
to the FEA.

• Protocols such as BGP need to know routing metric and reachability information to nexthops that are
not immediate neighbors. The RIB provides a way to register interest in such routing information, in
such a way that the routing protocol will be notified if a change occurs.

• Protocols such as RIB need to announce routes to the neighbors (e.g., routes from directly connected
subnets, static routes, etc). The RIB provides the mechanism for redistributing the routes from a
specific table to parties that have registered interest in that table.

By default, the RIB process holds four separate RIBs:

1



• Unicast IPv4 RIB

• Unicast IPv6 RIB

• Multicast IPv4 RIB

• Multicast IPv6 RIB

C++ templates are used to build specialized IPv4 and IPv6 versions from the same code. Routing
protocols such as Multiprotocol BGP are capable of supplying routes that are multicast-only, and these
would be stored in the multicast RIBs. The unicast and multicast RIBs primarily differ in that only unicast
routes are propagated to the forwarding engine.

Note that we do not currently support multiple RIBs for otherpurposes, such as VPN support, but the
RIB architecture will permit such extensions.

2 Structure of a RIB

The RIB process may hold multiple RIBs. Figure 1 gives an overview of the structure of a unicast RIB.

Origin
Table

Merge
Table

ExtInt
Table

Register
Table

Origin
Table

Origin
Table

Origin
Table

Origin
Table

Merge
Table

Merge
Table

RIP
routes

OSPF
routes

static
routes

IBGP
routes

EBGP
routes

To FEA

Registration
of interest
from routing
protocols

Notifications
of change to
routing protocols

To other
Rib Clients

Register Rib
Clients

Redist
Table

Figure 1: Overview of a RIB

In general, routing protocols supply routes to the OriginTables. These routes then flow though the tree
structure from left to right, until they reach the RedistTable, where they are propagated to the Forwarding
Engine Abstraction (FEA) process.

2.1 Plumbing

The RIB plumbing code dynamically creates and maintains thetree of tables as shown in Figure 1. When
a new routing protocol registers with the RIB, a new OriginTable will be created, and a MergeTable or an
ExtIntTable will be created to plumb that OriginTable into the RIB tree at an appropriate location. Similarly,

2



if a routing protocol deregisters with the RIB, the relevantOriginTable and additional tables will be deleted
and the RIB tree simplified again.

2.2 OriginTable

The OriginTable acceptsroute add requests from a single routing protocol, stores the route, and prop-
agates it downstream. It also answerslookup route requests from downstream from the routes it has
stored.

An OriginTable for the “connected” protocol always exists,to handle routes for directly connected in-
terfaces. It gets its information via the VifManager from the Forwarding Engine Abstraction (FEA) process.

2.3 MergeTable

A MergeTable has two upstream (parent) tables and one downstream (child) table.
Multiple OriginTables may hold different routes for the same subnet. Thus, when anadd route

request reaches a MergeTable from one parent, the MergeTable performs a route lookup on the other parent
to see if the route already exists. If it does, then the new route is only propagated if it is better than the
existing route, where “better” is determined based on the relative administrative distance of the routes.

Similarly, if a delete route request reaches a MergeTable, it performs a route lookup on the other
parent table. If the route being deleted was better than the alternative, then the delete is propagated down-
stream followed by anadd route for the alternative. If the route being deleted was worse than the alter-
native, then the deletion needs to be propagated no further.

When a MergeTable receives alookup route request from downstream, it sends the request on to
both parents. The better of the two answers is sent in response.

2.4 ExtIntTable

ExtIntTable functions very similarly to the MergeTable, but there is an asymmetry between the parents. On
the Internal side, the originating routing protocols always supply routes that have an immediate neighbor
as the nexthop. On the External side, the originating routing protocols may supply routes that have an
immediate neighbor as the nexthop, but they may also supply routes where the nexthop is multiple IP hops
away.

When anadd route request arrives from the external parent, the ExtIntTable does the same compar-
isons that happen with a MergeTable. However, it also checksto see if the nexthop is an immediate neighbor.
If it is not, then the ExtIntTable attempts to find a route thatindicates which immediate neighbor to use to
reach the nexthop, and the nexthop in the route that is propagated downstream will be that of this immediate
neighbor. If no route exists to the nexthop, the route will not be propagated downstream, but will be stored
in a table of unresolved routes in case a route that arrives later can cause it to resolve.

Each RIB only contains a single ExtIntTable.

2.5 RegisterTable

RegisterTable takes registrations from routing protocolsfor routing information related to specific destina-
tions, answers the request, and stores the registration. Ifthe routing information in the answer changes, it
will asynchronously notify the routing protocol of the change. The precise interface is described in section
3.6, but the general idea is illustrated by this example:

3



Suppose the RIB contains routes for 1.0.0.0/16 and 1.0.2.0/24. Now a routing protocol expresses an
interest in address 1.0.1.1. This matches against the routing entry for 1.0.0.0/16, so the answer contains
1.0.0.0/16 and the related nexthop and metric.

However we would like the routing protocol to be able to use the answer if it also cares about other
addresses, such as 1.0.0.1 or 1.0.2.1. However, while the former matches against 1.0.0.0/16, the latter
matches against 1.0.2.0/24. Thus if the RIB only returns 1.0.0.0/16, the routing protocol cannot tell whether
it can use this information for any other address than the oneit asked about.

To rectify this, the RIB returns not only the answer (1.0.0.0/16, plus metric and nexthop), but also the
subset of this prefix for which the answer is known to be good. In this case, the answer is good for 1.0.0.0 to
1.0.1.255, which is returned as a subnet: 1.0.0.0/23. Any address that the routing protocol cares about that
falls within 1.0.0.0/23 does not require additional communication with the RIB.

The RegisterTable keeps track of which information it gave which routing protocol, so that if this in-
formation becomes invalid, the routing protocol can be informed. For example, if a new route appears for
1.0.1.0/24, then this would cause the registration covering 1.0.0.0/23 to be invalidated because 1.0.1.0/24 is
more specific than 1.0.0.0/16 and overlaps the range 1.0.0.0/23 of the registration.

Each RIB only contains a single RegisterTable.

2.6 RedistTable

The purpose of a RedistTable is to redistribute the routes from any RIB table to all external parties that have
registered interest at that table. Thus, a RedistTable can be used for the redistribution of the configured (and
possibly filtered) routes from one routing protocol to another. For example, routes from within an AS might
be propagated from OSPF to BGP for external advertisement.

A RedistTable can by dynamically plumbed into the tree of tables at any point, and there may be many
RedistTables in each RIB. Typically, RedistTables are inserted immediately after an OriginTable, and at the
end of the tree of tables.

ResistTables are used also for redistributing the final routes to the FEA and other interested processes.
Both the unicast and multicast RIBs have a RedistTable at theend (see Figure 1).

3 XRL Interface

The RIB supports the following XRLs.

3.1 Routing Protocol Registration

add_igp_table4 ? protocol:txt & target_class:txt & target_instance:txt
& unicast:bool & multicast:bool

add_igp_table6 ? protocol:txt & target_class:txt & target_instance:txt
& unicast:bool & multicast:bool

add_egp_table4 ? protocol:txt & target_class:txt & target_instance:txt
& unicast:bool & multicast:bool

add_egp_table6 ? protocol:txt & target_class:txt & target_instance:txt
& unicast:bool & multicast:bool

delete_igp_table4 ? protocol:txt & target_class:txt & target_instance:txt
& unicast:bool & multicast:bool

4



delete_igp_table6 ? protocol:txt & target_class:txt & target_instance:txt
& unicast:bool & multicast:bool

delete_egp_table4 ? protocol:txt & target_class:txt & target_instance:txt
& unicast:bool & multicast:bool

delete_egp_table6 ? protocol:txt & target_class:txt & target_instance:txt
& unicast:bool & multicast:bool

These XRLs are used by routing protocols to register with theRIB process, and hence to create Orig-
inTables in all the RIBs.

The igp xrls will plumb the OriginTable on the Internal side of the ExtIntTable. The egp xrls will
plumb the OriginTable on the External side of the ExtIntTable.

protocol is a text string used to identify the routing protocol. Currently it MUST be a protocol the
RIB knows about, or an administrative distance cannot be assigned to the routes. Future versions of the RIB
may make this interface more extensible.

target class andtarget instance specify the class and instance associated with the target.
unicast andmulticast indicate whether the routing protocol will insert routes into the unicast RIB

or the multicast RIB or both.

3.2 Adding and Deleting Routes

add_route4 ? protocol:txt & unicast:bool & multicast:bool \
& network:ipv4net & nexthop:ipv4 & metric:u32 \
& policytags:list

add_route6 ? protocol:txt & unicast:bool & multicast:bool \
& network:ipv6net & nexthop:ipv6 & metric:u32 \
& policytags:list

replace_route4 ? protocol:txt & unicast:bool & multicast:bool \
& network:ipv4net & nexthop:ipv4 & metric:u32 \
& policytags:list

replace_route6 ? protocol:txt & unicast:bool & multicast:bool \
& network:ipv6net & nexthop:ipv6 & metric:u32 \
& policytags:list

delete_route4 ? protocol:txt & unicast:bool & multicast:bool \
& network:ipv4net

delete_route6 ? protocol:txt & unicast:bool & multicast:bool \
& network:ipv6net

add_interface_route4 ? protocol:txt \
& unicast:bool & multicast:bool \
& network:ipv4net & nexthop:ipv4 \
& ifname:txt & vifname:txt & metric:u32 \

5



& policytags:list

add_interface_route6 ? protocol:txt \
& unicast:bool & multicast:bool \
& network:ipv6net & nexthop:ipv6 \
& ifname:txt & vifname:txt & metric:u32 \
& policytags:list

replace_interface_route4 ? protocol:txt \
& unicast:bool & multicast:bool \
& network:ipv4net & nexthop:ipv4 \
& ifname:txt & vifname:txt & metric:u32 \
& policytags:list

replace_interface_route6 ? protocol:txt \
& unicast:bool & multicast:bool \
& network:ipv6net & nexthop:ipv6 \
& ifname:txt & vifname:txt & metric:u32 \
& policytags:list

These XRLs are used to communicate new routes, changed routes, or the deletion of routes to the RIB.
Theadd interface route andreplace interface route XRLs are similar to theadd route
andreplace route XRLs except that the origin explicitly specifies the outgoing network interface and
vif for the route.

Note that sending anadd route for a route that is already in the OriginTable for that protocol is an
error, as is sending areplace route or delete route for a route that is not in the OriginTable for
that protocol.

3.3 Route Lookup

lookup_route_by_dest4 ? addr:ipv4 & unicast:bool & multicast:bool
-> nexthop:ipv4

lookup_route_by_dest6 ? addr:ipv6 & unicast:bool & multicast:bool
-> nexthop:ipv6

These XRLs may be used to see how the RIB would route a packet for a specific destination.
nexthop will return the resolved nexthop if the request is successful, or all zeros otherwise. It is an

error for the unicast and multicast fields to both be true or both false.

3.4 VIF Management (test interface)

new_vif ? name:txt
add_vif_addr4 ? name:txt & addr:ipv4 & subnet:ipv4net
add_vif_addr6 ? name:txt & addr:ipv6 & subnet:ipv6net

These XRLs can be used to inform the RIB about directly connected (virtual) interfaces. The use of
these XRLs is intended only for testing purposes - the RIB normally learns of VIFs directly from the FEA
process.

6



3.5 Route Redistribution

redist_enable4 ? to_xrl_target:txt & from_protocol:txt & unicast:bool
& multicast:bool & cookie:txt

redist_enable6 ? to_xrl_target:txt & from_protocol:txt & unicast:bool
& multicast:bool & cookie:txt

redist_disable4 ? to_xrl_target:txt & from_protocol:txt & unicast:bool
& multicast:bool & cookie:txt

redist_disable6 ? to_xrl_target:txt & from_protocol:txt & unicast:bool
& multicast:bool & cookie:txt

redist_transaction_enable4 ? to_xrl_target:txt & from_protocol:txt
& unicast:bool & multicast:bool & cookie:txt

redist_transaction_enable6 ? to_xrl_target:txt & from_protocol:txt
& unicast:bool & multicast:bool & cookie:txt

redist_transaction_disable4 ? to_xrl_target:txt & from_protocol:txt
& unicast:bool & multicast:bool & cookie:txt

redist_transaction_disable6 ? to_xrl_target:txt & from_protocol:txt
& unicast:bool & multicast:bool & cookie:txt

These XRLs are intended to be used to enable and disable routeredistribution from a RIB table to an
XRL target. The* transaction * XRLs are used for registering interest in transaction-based route re-
distribution (i.e., where there isstart transaction andcommit transaction around each block
of add/delete routes).

3.6 Registration of Interest in Routes

register_interest4 ? target:txt & addr:ipv4
-> resolves:bool & base_addr:ipv4 & prefix_len:u32 &

real_prefix_len:u32 & nexthop:ipv4 & metric:u32
register_interest6 ? target:txt & addr:ipv6

-> resolves:bool & base_addr:ipv6 & prefix_len:u32 &
real_prefix_len:u32 & nexthop:ipv6 & metric:u32

deregister_interest4 ? target:txt & addr:ipv4 & prefix_len:u32
deregister_interest6 ? target:txt & addr:ipv6 & prefix_len:u32

These XRLs are used to register and deregister interest in routing information related to a specific IP
address.

Target is the name of the XRL module that registered the interest.
resolves indicates whether or not the address is routable. If it is notroutable, the values ofnexthop

andmetric are undefined.real prefix len returns the prefix length of the routing entry that matches
the address in the request.prefix len returns the prefix length of the largest subnet that covers the
address and is not overlayed by a more specific route. Thusprefix len >= real prefix len and
addr is an address within the subnetbase addr/prefix len which itself is a subset of the subnet
base addr/real prefix len.

The routing protocol need not ask again for any address that lies withinbase addr/prefix len but
can not use this answer to determine anything about addresses that lie outside ofbase addr/prefix len
but withinbase addr/real prefix len.

7



3.7 Registration of Interest in Routes: Client Interface

When a routing protocol has registered interest in routes, the RIB will need to be able to asynchronously call
the routing protocol to inform it of any changes. Thus the routing protocol must implement the rib client
interface. This consists of the following XRLs:

route_info_changed4 ? addr:ipv4 & prefix_len:u32 &
nexthop:ipv4 & metric:u32

route_info_changed6 ? addr:ipv6 & prefix_len:u32 &
nexthop:ipv6 & metric:u32

route_info_invalid4 ? addr:ipv4 & prefix_len:u32
route_info_invalid6 ? addr:ipv6 & prefix_len:u32

Theroute info changed XRLs inform the routing protocol that the nexthop or metric associated with
the route with subnetaddr/prefix len has changed. The registration with the RIB is still valid.

Theroute info invalid XRLs inform the routing protocol that the information associated with
the specified subnet is no longer correct. The registration with the RIB is no longer valid, and the routing
protocol must re-register with the RIB to find out what happened.

A Modification History

• December 11, 2002: Initial version 0.1 completed.

• March 10, 2003: Updated to match XORP release 0.2.

• June 9, 2003: Updated to match XORP release 0.3: described the new RibClient registration mecha-
nism.

• August 28, 2003: Updated the version to 0.4, and the date.

• November 6, 2003: Updated the version to 0.5, and the date.

• July 8, 2004: Updated to match XORP release 1.0: replaced ExportTable with RedistTable, and fixed
the XRLs specification.

• April 13, 2005: Updated to match XORP release 1.1: fixed the XRL names and added description for
the addinterfaceroute and replaceinterfaceroute XRLs.

• March 8, 2006: Updated the version to 1.2, and the date.

• August 2, 2006: Added “Modification History” appendix. Updated the version to 1.3, and the date.

• March 20, 2007: Updated the version to 1.4, and the date.

8


