
XORP Forwarding Engine Abstraction∗

Version 1.6-RC

XORP, Inc.
http://www.xorp.org/
feedback@xorp.org

December 24, 2008

1 Introduction

The role of the Forwarding Engine Abstraction (FEA) in XORP is to provide a uniform interface to the
underlying forwarding engine. It shields XORP processes from concerns over variations between platforms.
As a result, XORP processes need not be concerned whether therouter is comprised of a single machine, or
cluster of machines; or whether the network interfaces are simple, like a PCI Ethernet adapter, or are smart
and have processing resources, like an Intel IXP cards.

The FEA performs four distinct roles:interface management, forwarding table management, raw packet
I/O, andTCP/UDP socket I/O. Those are described briefly in Section 1.1, Section 1.2, Section 1.3, and
Section 1.4 respectively. Section 2 presents the design andimplementation of the FEA components. FEA
status summary is in Section 3.

In a standard XORP system, the Multicast Forwarding Engine Abstraction (MFEA) is part of the FEA.
The MFEA is conceptually distinct from FEA and is used for multicast-specific abstraction of the underlying
system. Combining the MFEA with the FEA reduces the load on the system. For information about the
MFEA architecture, see [1].

1.1 Interface Management

In the normal course of interaction, the RouterManager process is the principal source of interface con-
figuration requests to the FEA. The RouterManager constructs the interface configuration from the router
configuration files and the input it receives at the command line. The type of requests the RouterManager
sends to the FEA are to enable interfaces, create virtual interfaces, set interface MTU’s, and so forth. The
FEA interprets and executes these requests in a manner appropriate for the underlying forwarding plane.

Processes can register with the FEA to be notified of changes in interface configuration. The registered
processes are notified of changes, and may query the FEA on thereceipt of an update notification to deter-
mine the change that occurred. These notifications are primarily of interest to routing protocols since these
need to know what the state of each interface is at a given time.

Both of the above interactions are depicted in Figure 1.

∗This document describes the FEA in XORP-1.4. Since then there have been major re-design/changes in the FEA internals.
Those changes will continue until XORP-1.6 or XORP-1.7. This document will be updated once the new design is finalized.

1

Configuration

Routing Process

User
Input

Configuration
Files

RouterManager

Configuration

Queries Notification
Update

Configuration

Requests Queries

FEA Interface Manager

Figure 1: FEA Interface Management interaction with other XORP processes

1.2 Forwarding Table Management

The FEA primarily receives forwarding table configuration information from the RIB process. The RIB
arbitrates between the routes proposed by the different routing processes, and propagates the results into
the FEA’s forwarding table interface. The FEA accepts requests to insert and remove routing entries and
propagates the necessary changes into the forwarding plane. The FEA also supports queries on the current
contents of the forwarding table. Finally, processes can register with the FEA to receive update notifications
about changes to the forwarding table.

1.3 Raw Packet I/O

Routing protocols, such as OSPF, need to be able to send and receive packets on specific interfaces in the
forwarding plane in order to exchange routing information and to determine the liveness of connected paths.
Since the forwarding plane may be distributed across multiple machines, these routing protocols delegate
the I/O operations on these packets to the FEA. The FEA supports sending and receiving raw packets on
specific interfaces.

The transmission of raw packets through the FEA is straightforward, the routing process simply hands
the FEA a raw packet and indicates which interface it should be sent on. The reception of raw packets is
handled through a register-notify interface where the routing process registers which types of packets on
which interfaces it is interested.

1.4 TCP/UDP Socket I/O

Routing protocols, such as BGP or RIP, need to be able to send and receive TCP or UDP packets to/from a
specific IP address in order to establish peering connectivity and to exchange routing information. Similar

2

to the raw packet I/O delegation, the FEA can be used to delegate the TCP/UDP socket I/O operations.
The handling of TCP or UDP operations is done by simply extending the UNIX TCP/UDP socket

interface such that all relevant socket operations have XRLfront-end interface.

2 Design and Implementation

2.1 Overview

The FEA fulfills four discrete roles: Interface Management,Forwarding Table Management, Raw Packet
I/O, and TCP/UDP Socket I/O. The Interface Management and Forwarding Table Management roles follow
a similar design pattern since both relate to the setting andgetting of configuration state. The Raw Packet
I/O and TCP/UDP Socket I/O have little in common with the other two roles.

The Interface Management and Forwarding Table Management roles use transactions for setting con-
figuration state. The transactions are a collection of grouped operations that are queued until committed or
aborted. Transactions provide atomic updates to the forwarding plane, which has the virtue of ensuring a
consistent state at any particular instant of time. In addition, forwarding plane updates may incur per update
costs, and grouping operations may help to reduce these. Queries of the configuration state happen on the
immediate state, and are independent of any transactions that are in progress.

The FEA, as with other XORP processes, uses the XRL mechanismfor inter-process communication
and each role of the FEA is represented by a distinct XRL interface. The Interface Management, Raw Packet
I/O and TCP/UDP Socket I/O roles support the notion of clients that notified when event occur and client
processes are expected to implement known interfaces. The FEA XRL and FEA XRL client interfaces are
shown in Table 1.

Role XRL Interface file Client XRL Interface

Interface Management fea ifmgr.xif fea ifmgr client.xif
Forwarding Table Managementredist transaction{4,6}.xif fea fib.xif
Raw Packet I/O fea rawpkt{4,6}.xif fea rawpkt{4,6} client.xif
TCP/UDP Socket I/O socket{4,6}.xif socket{4,6} user.xif

Table 1: FEA XRL Interfaces (defined in$XORP/xrl/target/fea.tgt)

The XRL handling code is found in$XORP/fea/xrl target.{hh,cc}. Each XRL interface is
handled by an XRL-aware helper class. The helper class understands the semantics of the implementation,
and maps errors and responses to the appropriate XRL forms. The helper classes and their relations to the
interfaces are depicted in Figure 2.

3

Forwarding Table
Management

Interface
Management

XrlFeaTarget

XrlInterfaceManager

XrlSocketServer TCP/UDP Socket I/O

Raw Packet I/OXrlRawSocket4Manager

fea_ifmgr_mirror.xif

fea/xrl_rawsock{4,6}.hh

fea/xrl_socket_server.hh

socket{4,6}_user.xif

fea/xrl_fti.hh
XrlFtiTransactionManager

fea/xrl_target.hh

fea_ifmgr.xif

redist_transaction{4,6}.xif

fea/xrl_ifmanager.hh

fea_rawpkt{4,6}_client.xif

libfeaclient/ifmgr_xrl_replicator.hh
IfMgrXrlReplicatorManager

fea_fib_client.xif

fea_rawpkt{4,6}.xif

socket{4.6}.xif

TCP/UDP Socket
Observer

Observer

Interface Event

FIB Event

Raw Packet Event
Observer

ObserverF
igure

2:
X

R
L

Interfaces
in

relation
to

F
E

A
classes

4

2.2 Interface Management

To succinctly explain the interface management classes andhow they interact we first describe the repre-
sentation of interface configuration state. Interface configuration state is held withinIfTree class. The
IfTree structure is used and manipulated by all of the the interfacemanagement classes. TheIfTree
class is a container of interface state information organized in a hierarchy:

IfTree contains:

IfTreeInterface physical interface representation, contains:

IfTreeVif virtual (logical) interface representation, contains:

IfTreeAddr4 Interface IPv4 address and related attributes.

IfTreeAddr6 Interface IPv6 address and related attributes.

Each item in the IfTree hierarchy is derived fromIfTreeItem. IfTreeItem is a base class to
track the state of a configurable item. Items may be in one of four states:CREATED,DELETED,CHANGED,
NO CHANGE. For example, if an item is added to the tree it will be in theCREATED state. The IfTreeItem::finalizestate()
method places the item in theNO CHANGE state and items marked asDELETED are actually removed at this
time.

The state labeling associated withIfTreeItem adds a small degree of complexity to theIfTree
classes. However, it allows for one entity to manipulate an interface configuration tree and pass it to another
entity which can immediately determine the changes from thestate labels.

The interface management functionality of the FEA is represented by three interacting classes:IfConfig,
InterfaceManager, InterfaceTransactionManager. The interaction of these classes is man-
aged by theXrlInterfaceManager, which takes external XRL requests and maps them onto the ap-
propriate operations. The interactions between these classes and related classes are shown in Figure 3. The
XrlInterfaceManager is sufficiently aware of the semantics of the operations to pass back human
parseable error messages when operations fail.

TheIfConfig class is an interface configurator, and contains plug-ins for each supported forwarding
plane architecture to access, set, or monitor the interface-related information. The functionality of the
IfConfig is conceptually simple: it can push-down anIfTree to the forwarding plane or pull-up the
live configuration state from the forwarding plane as anIfTree.

TheInterfaceManager class contains theIfTree representing the live configuration, and a refer-
ence to theIfConfig that should be used to perform the configuration. TheInterfaceTransactionManager
class holds and dispatches transactions. Each operation within a transaction operates on an item within a
IfTree structure. Each transaction operates on a copy of the liveIfTree and when the commit is made,
this structure is pushed down into theIfConfig.

The process of configuration is asynchronous, and two phase.Errors can occur whilst a transaction is
being committed and operating on anIftree (e.g., because of a bad operation within a transaction), and er-
rors can occur when the configuration is pushed down to the forwarding plane (e.g., the configuration has an
inconsistent number of interfaces). Errors in the first phase are reported by theInterfaceTransactionManager.
Errors in the second phase are reported by theIfConfig through a helper class derived fromIfConfigErrorReporter

The interface management role of the FEA is expected to report configuration changes to other XORP
processes. Hence, theIfConfig class uses theXrlIfConfigUpdateReporter class to report con-
figuration changes.

5

Notification

InterfaceManager

SimpleIfConfigErrorReporter

XrlFeaTargetXrlIfManager

InterfaceTransactionManager

Confiiguration
IfTree

Configuration

Commands

IfConfig

Confiiguration
IfTree

Update Notification

Error Report

Xrl Update

Confiiguration
IfTree

IfConfigUpdateReporter

Error Report Xrl Responses

Xrl Requests

Configuration Queryt

Configuration Info XrlResponses

Xrl Requests

IfConfig::push_config()IfConfig::pull_config()

F
igure

3:
F

E
A

Interface
M

anagem
entclasses

and
their

intera
ctions

6

2.3 Forwarding Table Management

The Forwarding Table Management role propagates routes into the forwarding plane. The Forwarding Table
Management role does not shadow the forwarding informationoutside of the forwarding plane itself; rather,
it relies on the RIB to do this. As a result, it is considerablysimpler than the Interface Management role.

The classes interacting to provide the Forward Table Management role are: theXrlFtiTransactionManager
class, a class that adapts requests and responses from the subset ofXrlFeaTargetmethods that represent
the forwarding table management externally; theFtiTransactionManager that builds and executes
transactions to configure the forwarding table; and classFti that understands how to program the forward-
ing plane.

TheFti class provides the interface for accessing the forwarding plane. It includes methods for adding
and removing routes, as well as resolving routes in the forwarding table. Modifications to theFti state
are only permitted during a configuration interval. The configuration interval is started and stopped using
Fti::start configuration andFti:end configuration. The particular access to the for-
warding plane is performed by plug-ins that are specific to that plane. For example, to read the forwarding
table currently there are plug-ins that utilize the sysctl(3) mechanism (e.g., in case of FreeBSD) or the
netlink mechanism (e.g., in case of Linux). There are plug-ins to read, set or monitor the forwarding table
information at the granularity of one entry, or the whole table.

TheFtiTransactionManager presents a transactional interface for configuring theFti instance.
Command classes exist for each possible modifier operation on the Fti instance. TheFti methods
start configuration andend configuration are called at the start and end of the transaction.

Note that the XRL interface for adding/deleting routes isredist transaction{4,6} which is a
generic XRL interface used by the RIB to redistribute routesto interested parties.

The Forwarding Table Management also provides interface for processes to register interest in receiving
updates whenever the Forwarding Information Base changes.The FEA is observing all FIB changes within
the underlying system (including those triggered by the FIBmanipulation by the FEA itself). Those changes
are propagated to all instances of theFibClientclass (implemented within theXrlFtiTransactionManager
class).

2.4 Raw Packet I/O

The Raw Packet I/O role of the FEA provides a means for XORP processes to send and receive raw packets
on particular interfaces. This is an essential function since in a XORP router the forwarding plane may
reside on a different machine to the routing processes, it may be distributed across several machines, or may
have custom network interfaces that require special programming.

The FEA supports both IPv4 and IPv6 raw packets. The text below describes the IPv4 implementation
and the IPv4-specific classes; the IPv6 implementation is similar except the class names contain6 instead
of 4.

The raw packet interface is managed by theXrlRawSocket4Manager class. This manages a sin-
gle instance of aFilterRawSocket41. The FilterRawSocket4 encapsulates a raw socket and
allows raw IPv4 packets to be written and filters attached to parse raw packets as they are received. The
XrlRawSocket4Manager allows an arbitrary number of filters to be associated with the active raw
socket. The filters are each notified when a raw packet is received on the raw socket. The XrlRaw-
Socket4Manager allows other XORP processes to receive packets via XRL on the basis on filter conditions.
Currently (July 2008), the only implemented filter is theXrlVifInputFilter which allows processes

1The current implementation only works on single machine XORP forwarding planes

7

to receive raw packets on the basis of the receiving VIF. In principle, filters could be written to match on
any field within a packet and perform an action.

2.5 TCP/UDP Socket I/O

Similar to the Raw Packet I/O (see Section 2.4), the FEA provides a means for XORP processes to perform
TCP or UDP socket operations and to send and receive TCP/UDP packets. This is an essential function
since in a XORP router the forwarding plane may reside on a different machine to the routing processes,
it may be distributed across several machines, or may have custom network interfaces that require special
programming.

The TCP/UDP socket interface is managed by theXrlSocketServer class. This manages TCP and
UDP IPv4 and IPv6 sockets2. TheXrlSocketServer performs the particular TCP/UDP socket opera-
tions on the underlying system (opening and closing a socket, bind, send and receive, etc), and provides the
XRL front-end interface. Note that for simplicity some of the socket XRL interface combines several system
socket operations in one atomic FEA operation. For example,thesocket4/0.0/tcp open bind XRL
interface creates a TCP socket that binds it to a specific local address.

3 Status

There are two versions of the FEA:fea andfea dummy. Thefea is a version of the FEA that contains
plug-ins to access the forwarding plane by using the following mechanisms:

• getifaddrs(3), sysctl(3), ioctl(3), Linux netlink(7) sockets, Linux /proc andWindows IP Helper API to
obtain interface-specific information.

• ioctl(3), Linux netlink(7) sockets andWindows IP Helper API to set interface-specific information.

• BSD routing sockets andLinux netlink(7) sockets for observing changes in the interface-specific in-
formation.

• BSD routing sockets, Linux netlink(7) sockets andWindows IP Helper API to lookup a single forward-
ing entry in the forwarding plane.

• sysctl(3), Linux netlink(7) sockets andWindows IP Helper API to obtain the whole forwarding table
from the forwarding plane.

• BSD routing sockets, Linux netlink(7) sockets andWindows IP Helper API to set a single forwarding
entry or the whole table in the forwarding plane.

• BSD routing sockets andLinux netlink(7) sockets to observe changes in the forwarding table.

In other words, currently (July 2008) thefea supports DragonFlyBSD, FreeBSD, NetBSD, OpenBSD,
MacOS X, Linux, and Windows Server 2003 (see file$XORP/BUILD NOTES about the specific OS ver-
sions the FEA has been tested on). In addition, there is also support for the Click forwarding plane (both
kernel-space and user-space). The Click support utilizes the above plug-in based architecture by providing
the appropriate support to add or delete routes for example to kernel or user-level Click.

2The current implementation only works on single machine XORP forwarding planes

8

Thefea dummy is a substitute FEA and may be used for development testing purposes. Thefea dummy
represents an idealized form of FEA, other FEA’s may differ in their responses due to architectural differ-
ences. Therefore processes that interact with the FEA should regardfea dummy interactions as indicative,
but not definitive.

The FEA’s are still a work in progress and no doubt have some bugs. Any contributions or bug fixes are
welcome.

A Modification History

• December 11, 2002: Initial version 0.1 completed.

• March 10, 2003: Updated to match XORP release 0.2: No significant changes.

• June 9, 2003: Updated to match XORP release 0.3: Changes related to the MFEA-¿FEA merging.

• August 28, 2003: Updated to match XORP release 0.4: Added “Linux /proc” to the list of imple-
mented mechanisms for reading network interface information.

• November 6, 2003: Updated to match XORP release 0.5: Uppdated the FEA status.

• July 8, 2004: Updated to match XORP release 1.0: Added support for TCP/UDP socket I/O interface,
support for libfeaclient XRL interface, and support for FIBobserver interface.

• April 13, 2005: Updated to match XORP release 1.1: Updated the status for the raw sockets interface,
and for Click forwarding path.

• March 8, 2006: Updated to match XORP release 1.2: Added support for Windows Server 2003; the
raw sockets interface is in use.

• August 2, 2006: Updated to match XORP release 1.3: Added DragonFlyBSD to the list of supported
OSs; added “Modification History” appendix.

• March 20, 2007: Updated the version to 1.4: No changes.

• July 22, 2008: Updated the version to 1.5: Added a footnote that the description is actually for the
FEA in XORP-1.4.

References

[1] XORP Multicast Forwarding Engine Abstraction. XORP technical document. http://www.xorp.org/.

9

