OGRE  1.9.0
OgreVector4.h
Go to the documentation of this file.
1/*
2-----------------------------------------------------------------------------
3This source file is part of OGRE
4 (Object-oriented Graphics Rendering Engine)
5For the latest info, see http://www.ogre3d.org/
6
7Copyright (c) 2000-2014 Torus Knot Software Ltd
8
9Permission is hereby granted, free of charge, to any person obtaining a copy
10of this software and associated documentation files (the "Software"), to deal
11in the Software without restriction, including without limitation the rights
12to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13copies of the Software, and to permit persons to whom the Software is
14furnished to do so, subject to the following conditions:
15
16The above copyright notice and this permission notice shall be included in
17all copies or substantial portions of the Software.
18
19THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25THE SOFTWARE.
26-----------------------------------------------------------------------------
27*/
28#ifndef __Vector4_H__
29#define __Vector4_H__
30
31#include "OgrePrerequisites.h"
32#include "OgreVector3.h"
33
34namespace Ogre
35{
36
46 {
47 public:
48 Real x, y, z, w;
49
50 public:
55 inline Vector4()
56 {
57 }
58
59 inline Vector4( const Real fX, const Real fY, const Real fZ, const Real fW )
60 : x( fX ), y( fY ), z( fZ ), w( fW )
61 {
62 }
63
64 inline explicit Vector4( const Real afCoordinate[4] )
65 : x( afCoordinate[0] ),
66 y( afCoordinate[1] ),
67 z( afCoordinate[2] ),
68 w( afCoordinate[3] )
69 {
70 }
71
72 inline explicit Vector4( const int afCoordinate[4] )
73 {
74 x = (Real)afCoordinate[0];
75 y = (Real)afCoordinate[1];
76 z = (Real)afCoordinate[2];
77 w = (Real)afCoordinate[3];
78 }
79
80 inline explicit Vector4( Real* const r )
81 : x( r[0] ), y( r[1] ), z( r[2] ), w( r[3] )
82 {
83 }
84
85 inline explicit Vector4( const Real scaler )
86 : x( scaler )
87 , y( scaler )
88 , z( scaler )
89 , w( scaler )
90 {
91 }
92
93 inline explicit Vector4(const Vector3& rhs)
94 : x(rhs.x), y(rhs.y), z(rhs.z), w(1.0f)
95 {
96 }
97
100 inline void swap(Vector4& other)
101 {
102 std::swap(x, other.x);
103 std::swap(y, other.y);
104 std::swap(z, other.z);
105 std::swap(w, other.w);
106 }
107
108 inline Real operator [] ( const size_t i ) const
109 {
110 assert( i < 4 );
111
112 return *(&x+i);
113 }
114
115 inline Real& operator [] ( const size_t i )
116 {
117 assert( i < 4 );
118
119 return *(&x+i);
120 }
121
123 inline Real* ptr()
124 {
125 return &x;
126 }
128 inline const Real* ptr() const
129 {
130 return &x;
131 }
132
137 inline Vector4& operator = ( const Vector4& rkVector )
138 {
139 x = rkVector.x;
140 y = rkVector.y;
141 z = rkVector.z;
142 w = rkVector.w;
143
144 return *this;
145 }
146
147 inline Vector4& operator = ( const Real fScalar)
148 {
149 x = fScalar;
150 y = fScalar;
151 z = fScalar;
152 w = fScalar;
153 return *this;
154 }
155
156 inline bool operator == ( const Vector4& rkVector ) const
157 {
158 return ( x == rkVector.x &&
159 y == rkVector.y &&
160 z == rkVector.z &&
161 w == rkVector.w );
162 }
163
164 inline bool operator != ( const Vector4& rkVector ) const
165 {
166 return ( x != rkVector.x ||
167 y != rkVector.y ||
168 z != rkVector.z ||
169 w != rkVector.w );
170 }
171
172 inline Vector4& operator = (const Vector3& rhs)
173 {
174 x = rhs.x;
175 y = rhs.y;
176 z = rhs.z;
177 w = 1.0f;
178 return *this;
179 }
180
181 // arithmetic operations
182 inline Vector4 operator + ( const Vector4& rkVector ) const
183 {
184 return Vector4(
185 x + rkVector.x,
186 y + rkVector.y,
187 z + rkVector.z,
188 w + rkVector.w);
189 }
190
191 inline Vector4 operator - ( const Vector4& rkVector ) const
192 {
193 return Vector4(
194 x - rkVector.x,
195 y - rkVector.y,
196 z - rkVector.z,
197 w - rkVector.w);
198 }
199
200 inline Vector4 operator * ( const Real fScalar ) const
201 {
202 return Vector4(
203 x * fScalar,
204 y * fScalar,
205 z * fScalar,
206 w * fScalar);
207 }
208
209 inline Vector4 operator * ( const Vector4& rhs) const
210 {
211 return Vector4(
212 rhs.x * x,
213 rhs.y * y,
214 rhs.z * z,
215 rhs.w * w);
216 }
217
218 inline Vector4 operator / ( const Real fScalar ) const
219 {
220 assert( fScalar != 0.0 );
221
222 Real fInv = 1.0f / fScalar;
223
224 return Vector4(
225 x * fInv,
226 y * fInv,
227 z * fInv,
228 w * fInv);
229 }
230
231 inline Vector4 operator / ( const Vector4& rhs) const
232 {
233 return Vector4(
234 x / rhs.x,
235 y / rhs.y,
236 z / rhs.z,
237 w / rhs.w);
238 }
239
240 inline const Vector4& operator + () const
241 {
242 return *this;
243 }
244
245 inline Vector4 operator - () const
246 {
247 return Vector4(-x, -y, -z, -w);
248 }
249
250 inline friend Vector4 operator * ( const Real fScalar, const Vector4& rkVector )
251 {
252 return Vector4(
253 fScalar * rkVector.x,
254 fScalar * rkVector.y,
255 fScalar * rkVector.z,
256 fScalar * rkVector.w);
257 }
258
259 inline friend Vector4 operator / ( const Real fScalar, const Vector4& rkVector )
260 {
261 return Vector4(
262 fScalar / rkVector.x,
263 fScalar / rkVector.y,
264 fScalar / rkVector.z,
265 fScalar / rkVector.w);
266 }
267
268 inline friend Vector4 operator + (const Vector4& lhs, const Real rhs)
269 {
270 return Vector4(
271 lhs.x + rhs,
272 lhs.y + rhs,
273 lhs.z + rhs,
274 lhs.w + rhs);
275 }
276
277 inline friend Vector4 operator + (const Real lhs, const Vector4& rhs)
278 {
279 return Vector4(
280 lhs + rhs.x,
281 lhs + rhs.y,
282 lhs + rhs.z,
283 lhs + rhs.w);
284 }
285
286 inline friend Vector4 operator - (const Vector4& lhs, Real rhs)
287 {
288 return Vector4(
289 lhs.x - rhs,
290 lhs.y - rhs,
291 lhs.z - rhs,
292 lhs.w - rhs);
293 }
294
295 inline friend Vector4 operator - (const Real lhs, const Vector4& rhs)
296 {
297 return Vector4(
298 lhs - rhs.x,
299 lhs - rhs.y,
300 lhs - rhs.z,
301 lhs - rhs.w);
302 }
303
304 // arithmetic updates
305 inline Vector4& operator += ( const Vector4& rkVector )
306 {
307 x += rkVector.x;
308 y += rkVector.y;
309 z += rkVector.z;
310 w += rkVector.w;
311
312 return *this;
313 }
314
315 inline Vector4& operator -= ( const Vector4& rkVector )
316 {
317 x -= rkVector.x;
318 y -= rkVector.y;
319 z -= rkVector.z;
320 w -= rkVector.w;
321
322 return *this;
323 }
324
325 inline Vector4& operator *= ( const Real fScalar )
326 {
327 x *= fScalar;
328 y *= fScalar;
329 z *= fScalar;
330 w *= fScalar;
331 return *this;
332 }
333
334 inline Vector4& operator += ( const Real fScalar )
335 {
336 x += fScalar;
337 y += fScalar;
338 z += fScalar;
339 w += fScalar;
340 return *this;
341 }
342
343 inline Vector4& operator -= ( const Real fScalar )
344 {
345 x -= fScalar;
346 y -= fScalar;
347 z -= fScalar;
348 w -= fScalar;
349 return *this;
350 }
351
352 inline Vector4& operator *= ( const Vector4& rkVector )
353 {
354 x *= rkVector.x;
355 y *= rkVector.y;
356 z *= rkVector.z;
357 w *= rkVector.w;
358
359 return *this;
360 }
361
362 inline Vector4& operator /= ( const Real fScalar )
363 {
364 assert( fScalar != 0.0 );
365
366 Real fInv = 1.0f / fScalar;
367
368 x *= fInv;
369 y *= fInv;
370 z *= fInv;
371 w *= fInv;
372
373 return *this;
374 }
375
376 inline Vector4& operator /= ( const Vector4& rkVector )
377 {
378 x /= rkVector.x;
379 y /= rkVector.y;
380 z /= rkVector.z;
381 w /= rkVector.w;
382
383 return *this;
384 }
385
393 inline Real dotProduct(const Vector4& vec) const
394 {
395 return x * vec.x + y * vec.y + z * vec.z + w * vec.w;
396 }
398 inline bool isNaN() const
399 {
400 return Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z) || Math::isNaN(w);
401 }
404 inline _OgreExport friend std::ostream& operator <<
405 ( std::ostream& o, const Vector4& v )
406 {
407 o << "Vector4(" << v.x << ", " << v.y << ", " << v.z << ", " << v.w << ")";
408 return o;
409 }
410 // special
411 static const Vector4 ZERO;
412 };
416}
417#endif
418
#define _OgreExport
Standard 3-dimensional vector.
Definition OgreVector3.h:52
4-dimensional homogeneous vector.
Definition OgreVector4.h:46
Vector4(const Vector3 &rhs)
Definition OgreVector4.h:93
Real * ptr()
Pointer accessor for direct copying.
const Real * ptr() const
Pointer accessor for direct copying.
Vector4(const Real afCoordinate[4])
Definition OgreVector4.h:64
static const Vector4 ZERO
Vector4(const Real fX, const Real fY, const Real fZ, const Real fW)
Definition OgreVector4.h:59
Vector4(const int afCoordinate[4])
Definition OgreVector4.h:72
Vector4(Real *const r)
Definition OgreVector4.h:80
void swap(Vector4 &other)
Exchange the contents of this vector with another.
Real dotProduct(const Vector4 &vec) const
Calculates the dot (scalar) product of this vector with another.
Vector4(const Real scaler)
Definition OgreVector4.h:85
Vector4()
Default constructor.
Definition OgreVector4.h:55
bool isNaN() const
Check whether this vector contains valid values.
float Real
Software floating point type.
void swap(Ogre::SmallVectorImpl< T > &LHS, Ogre::SmallVectorImpl< T > &RHS)
Implement std::swap in terms of SmallVector swap.