Copyright © 2012 Ming Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
This paper considers impulsive control for the synchronization of chaotic systems with time delays. Based on the Lyapunov functions and the Razumikhin technique, some new synchronization criteria with an exponential convergence rate are derived. Our results show that impulses do contribute to globally exponential synchronization of dynamical systems. Besides, the impulsive moments are independent of the upper bound of time delays. Furthermore, a bigger upper bound of impulsive intervals for the synchronization of chaotic systems can be obtained when compared with many previous studies. Hence, our results are less conservative and more effective for the synchronization analysis. A numerical example is given to show the validity and potential of the developed results.