Copyright © 2013 Songnian He and Caiping Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Consider the variational inequality of finding a point satisfying the property , for all , where is the intersection of finite level sets of convex functions defined on a real Hilbert space and is an -Lipschitzian and -strongly monotone operator. Relaxed and self-adaptive iterative algorithms are devised for computing the unique solution of . Since our algorithm avoids calculating the projection (calculating by computing several sequences of projections onto half-spaces containing the original domain ) directly and has no need to know any information of the constants and , the implementation of our algorithm is very easy. To prove strong convergence of our algorithms, a new lemma is established, which can be used as a fundamental tool for solving some nonlinear problems.