Copyright © 2012 Ray-Yeng Yang and Hwung Hweng Hwung. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
When surface wave propagating over the two layer system usually induces internal wave in three different modes: they are external, internal and combination. In the present study, the nonlinear response of an initially flat sea bed, with two muddy sections, to a monochromatic surface progressive wave was investigated. From this theoretical result, it shows that a surface water wave progressing over two different muddy sections, the surface wave will excite two opposite-traveling short interfacial waves, forming a nearly standing wave at the interface of the fresh water and the muddy layer. Meanwhile, two opposite-outgoing “mud” waves each with very long wavelength will be simultaneously induced at the interface of two muddy sections. As a result, the amplitudes of the two short internal waves are found to grow exponentially in time. Furthermore, it will be much difficult to excite the internal waves when surface water wave progressing over two muddy sections with the large density gap.