Copyright © 2011 Abdellatif Moudafi and Eman Al-Shemas. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
This paper is concerned with the study of a penalization-gradient algorithm for solving variational inequalities, namely, find such that for all , where is a single-valued operator, is a closed convex set of a real Hilbert space . Given which acts as a penalization function with respect to the constraint , and a penalization parameter , we consider an algorithm which alternates a proximal step with respect to and a gradient step with respect to and reads as . Under mild hypotheses, we obtain weak convergence for an inverse strongly monotone operator and strong convergence for a Lipschitz continuous and strongly monotone operator. Applications to hierarchical minimization and fixed-point problems are also given and the multivalued case is reached by replacing the multivalued operator by its Yosida approximate which is always Lipschitz continuous.