International Journal of Mathematics and Mathematical Sciences
Volume 25 (2001), Issue 5, Pages 299-304
doi:10.1155/S0161171201005051
Structure of weakly periodic rings with potent extended commutators
Department of Mathematics, University of California, Santa Barbara 93106, CA, USA
Received 1 July 1999; Revised 3 May 2000
Copyright © 2001 Adil Yaqub. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
A well-known theorem of Jacobson (1964, page 217) asserts that a
ring R with the property that, for each x in R, there exists
an integer n(x)>1 such that xn(x)=x is necessarily
commutative. This theorem is generalized to the case of a weakly
periodic ring R with a sufficient number of potent extended
commutators. A ring R is called weakly periodic if every x in R can be written in the form x=a+b,
where a is nilpotent and b is potent in the sense
that bn(b)=b for
some integer n(b)>1. It is shown that a weakly periodic ring R in which certain extended commutators are potent must have a nil
commutator ideal and, moreover, the set N of nilpotents forms an ideal which, in fact, coincides with the Jacobson radical of R.