Copyright © 2010 Yanli Zhai et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We propose a new variational model for segmenting objects of interest from color images. This model is inspired by the geodesic active contour model, the region-scalable fitting model, the weighted bounded variation model and the active contour models based on the Mumford-Shah model. In order to segment desired objects in color images, the energy functional in our model includes a discrimination function that determines whether an image pixel belongs to the desired objects or not. Compared with other active contour models, our new model cannot only avoid the usual drawback in the level set approach but also detect the objects of interest accurately. Moreover, we investigate the new model mathematically and establish the existence of the minimum to the new energy functional. Finally, numerical results show the effectiveness of our proposed model.