Department of Applied Mathematics, Harbin University of Science and Technology, Harbin 150080, China
Copyright © 2012 Dongyan Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The practical stabilization problem is investigated for a class of linear systems with actuator saturation and input additive disturbances. Firstly, the case of the input additive disturbance being a bounded constant and a variety of different situations of system matrices are studied for the three-dimensional linear system with actuator saturation, respectively. By applying the Riccati equation approach and designing the linear state feedback control law, sufficient conditions are established to guarantee the semiglobal practical stabilization or oscillation for the addressed system. Secondly, for the case of the input additive disturbances being time-varying functions, a more general class of systems with actuator saturation is investigated. By employing the Riccati equation approach, a low-and-high-gain linear state feedback control law is designed to guarantee the global or semiglobal practical stabilization for the closed-loop systems.