Copyright © 2012 Xianhong Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
This paper focuses on modelling and solving the ingredient ratio optimization problem in cement raw material blending process. A general nonlinear time-varying (G-NLTV) model is established for cement raw material blending process via considering chemical composition, feed flow fluctuation, and various craft and production constraints. Different objective functions are presented to acquire optimal ingredient ratios under various production requirements. The ingredient ratio optimization problem is transformed into discrete-time single objective or multiple objectives rolling nonlinear constraint optimization problem. A framework of grid interior point method is presented to solve the rolling nonlinear constraint optimization problem. Based on MATLAB-GUI platform, the corresponding ingredient ratio software is devised to obtain optimal ingredient ratio. Finally, several numerical examples are presented to study and solve ingredient ratio optimization problems.