Department of Aeronautical Engineering, National Formosa University, Huwei, Yunlin 63208, Taiwan
Copyright © 2012 Tain-Sou Tsay. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
A nonlinear digital control scheme is proposed for analyses and designs of stable industry processes. It is derived from the converging characteristic of a specified numerical time series. The ratios of neighbourhoods of the series are formulated as a function of the output of the plant and the reference input command and will be converted to be unities after the output has tracked the reference input command. Lead compensations are also found by another numerical time series to speed up the system responses on the online adjusting manner. A servosystem, a time-delay system, a high-order system, a very-high-order system, and a 2 × 2 multivariable aircraft gas turbine engine are used to illustrate effectiveness of the proposed nonlinear digital controller. Comparisons with other conventional methods are also made.