Copyright © 2012 Yi Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
A prey-predator model with gestation delay, stage structure for predator, and selective harvesting effort on mature predator is proposed, where taxation is considered as a control instrument to protect the population resource in prey-predator biosystem from overexploitation. It shows that interior equilibrium is locally asymptotically stable when the gestation delay is zero, and there is no periodic orbit within the interior of the first quadrant of state space around the interior equilibrium. An optimal harvesting policy can be obtained by virtue of Pontryagin's Maximum Principle without considering gestation delay; on the other hand, the interior equilibrium of model system loses as gestation delay increases through critical certain threshold, a phenomenon of Hopf bifurcation occurs, and a stable limit cycle corresponding to the periodic solution of model system is also observed. Finally, numerical simulations are carried out to show consistency with theoretical analysis.