Copyright © 2012 Ling Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
In order to approximate any nonlinear system, not just affine nonlinear systems, generalized T-S fuzzy systems, where the control variables and the state variables, are all premise variables are introduced in the paper. Firstly, fuzzy spaces and rules were determined by using ant colony algorithm. Secondly, the state-space model parameters are identified by using genetic algorithm. The simulation results show the effectiveness of the proposed algorithm.