PORTUGALIAE MATHEMATICA Vol. 52, No. 3, pp. 357-361 (1995) |
|
Un Idéal Primitif de $\calc{U}(\calc{G}[X])$ se Contracte en un Idéal Primitif de $\calc{U}(\calc{G})$Youssef El FromDépartement de Mathématiques, Faculté des Sciences Semlalia,Université Cadi Ayyad, Marrakech - MAROC Abstract: Let $k$ be a field of characteristic zero and $\calc{U}(\calc{G})$ be the enveloping algebra over $k$ of a finite-dimensional Lie algebra $\calc{G}$. Given a primitive ideal $P$ of $\calc{U}(\calc{G})[X]$, we show that $P\cap\calc{U}(\calc{G})$ is also primitive. Full text of the article:
Electronic version published on: 29 Mar 2001. This page was last modified: 27 Nov 2007.
© 1995 Sociedade Portuguesa de Matemática
|