Portugaliae Mathematica   EMIS ELibM Electronic Journals PORTUGALIAE
MATHEMATICA
Vol. 61, No. 3, pp. 301-316 (2004)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home

 

On 3D slightly compressible euler equations

Alessandro Morando and Paolo Secchi

Dipartimento di Matematica, Facoltà di Ingegneria, Università di Brescia,
Via Valotti 9, 25133 Brescia -- ITALY
E-mail: morando@ing.unibs.it
Dipartimento di Matematica, Facoltà di Ingegneria, Università di Brescia,
Via Valotti 9, 25133 Brescia -- ITALY
E-mail: secchi@ing.unibs.it

Abstract: This paper is concerned with the Euler equations of a barotropic inviscid compressible fluid in the three dimensional space $\mathbb{R}^3$.
Following the method of decomposition in [4], [5], we show the existence of a smooth compressible flow on an arbitrary time interval $[0,T]$ for any Mach number sufficiently small and almost constant initial densities, when the incompressible limit flow is assumed to exist up to $T$ as well.
The life span $O(1/\epsilon^{\mu-1})$ for the compressible solution is obtained assuming also that the incompressible part of the solution itself has a life span of order $O(1/\epsilon^{\mu-1})$ and is $O(\epsilon^{\mu-1})$ for suitable $\mu>1$.

Keywords: compressible Euler equations; incompressible Euler equations; life span; incompressible limit; Mach number.

Classification (MSC2000): 35Q35, 76N10, 35L60.

Full text of the article:


Electronic version published on: 7 Mar 2008.

© 2004 Sociedade Portuguesa de Matemática
© 2004–2008 ELibM and FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition