EMIS ELibM Electronic Journals Zeitschrift für Analysis und ihre Anwendungen
Vol. 18, No. 3, pp. 687-699 (1999)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home

 

An Integral Operator Representation of Classical Periodic Pseudodifferential Operators

G. Vainikko

G. Vainikko: Helsinki Univ. Techn., Inst. Math., P.O. Box 1100, FIN-02015 HUT; e-mail: Gennadi.Vainikko@hut.fi

Abstract: In this note we prove that every classical 1-periodic pseudodifferential operator $A$ of order $\alpha \in \R \setminus \N_0$ can be represented in the form $$ (Au)(t) = \int\limits_0^1 \Big[\kappa_\alpha^{\sc+}(t - s)a_{\sc+}(t,s) + \kappa_\alpha^{\sc-}(t - s)a_{\sc-}(t,s) + a(t,s)\Big]u(s)\,ds $$ where $\alpha_{\sc\pm}$ and $a$ are $C^\infty$-smooth 1-periodic functions and $\kappa_\alpha^{\sc\pm}$ are 1-periodic functions or distributions with Fourier coefficients $\hat\kappa_\alpha^{\sc+}(n) = |n|^\alpha$ and $\hat \kappa_\alpha^{\sc-}(n) = |n|^\alpha{\rm sign}(n) \ \ (0 \ne n \in \Z)$ with respect to the trigonometric orthonormal basis $\{e^{in2\pi t}\}_{n\in\Z}$ of $L^2(0,1)$. Some explicit formulae for $\kappa_\alpha^{\sc\pm}$ are given. The case of operators of order $\alpha \in \N_0$ is discussed, too.

Keywords: classical periodic pseudodifferential operators, periodic integral operators, asymptotic expansions

Classification (MSC2000): 47G30, 47G10, 58G15

Full text of the article:


Electronic fulltext finalized on: 7 Aug 2001. This page was last modified: 9 Nov 2001.

© 2001 Heldermann Verlag
© 2001 ELibM for the EMIS Electronic Edition