Academic Editor: M. Victoria Otero-Espinar
Copyright © 2012 Tinggang Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Combining with the Crank-Nicolson/leapfrog scheme in time discretization, Chebyshev-Legendre spectral method is applied to space discretization for numerically solving the Benjamin-Bona-Mahony-Burgers (gBBM-B) equations. The proposed approach is based on Legendre Galerkin formulation while the Chebyshev-Gauss-Lobatto (CGL) nodes are used in the computation. By using the proposed method, the computational complexity is reduced and both accuracy and efficiency are achieved. The stability and convergence are rigorously set up. Optimal error estimate of the Chebyshev-Legendre method is proved for the problem with Dirichlet boundary condition. The convergence rate shows “spectral accuracy.” Numerical experiments are presented to demonstrate the effectiveness of the method and to confirm the theoretical results.