Copyright © 2012 Habtu Zegeye et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Let K be a closed convex subset of a real Hilbert space H and let be a continuous pseudocontractive mapping. Then for and each , there exists a sequence satisfying which converges strongly, as , to the minimum-norm fixed point of T. Moreover, we provide an explicit iteration process which converges strongly to a minimum-norm fixed point of T provided that T is Lipschitz. Applications are also included. Our theorems improve several results in this direction.