Copyright © 2011 Yi Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We propose a novel metal artifact reduction method based on a fractional-order curvature driven diffusion model for X-ray computed tomography. Our method treats projection data with metal regions as a damaged image and uses the fractional-order curvature-driven diffusion model to recover the lost information caused by the metal region. The numerical scheme for our method is also analyzed. We use the peak signal-to-noise ratio as a reference measure. The simulation results demonstrate that our method achieves better performance than existing projection interpolation methods, including linear interpolation and total variation.