Copyright © 2013 D. R. Jensen and D. E. Ramirez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Variance Inflation Factors (VIFs) are reexamined as conditioning diagnostics for models with intercept, with and without centering regressors to their means as oft debated. Conventional VIFs, both centered and uncentered, are flawed. To rectify matters, two types of orthogonality are noted: vector-space orthogonality and uncorrelated centered regressors. The key to our approach lies in feasible Reference models encoding orthogonalities of these types. For models with intercept it is found that (i)
uncentered VIFs are not ratios of variances as claimed, owing to infeasible Reference models; (ii) instead they supply informative angles between subspaces of regressors; (iii) centered VIFs are incomplete if not misleading, masking collinearity of regressors with
the intercept; and (iv) variance deflation may occur, where ill-conditioned data yield smaller variances than their orthogonal surrogates. Conventional VIFs have all regressors linked, or none, often untenable in practice. Beyond these, our models enable the unlinking of regressors that can be unlinked, while preserving dependence among those intrinsically linked. Moreover, known collinearity indices are extended to encompass angles between subspaces of regressors. To reaccess ill-conditioned data, we consider case studies ranging from elementary examples to data from the literature.