Academic Editor: Kelvin K. W. Yau
Copyright © 2011 L. Decreusefond and E. Ferraz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Given a Poisson process on a bounded interval, its random geometric graph is the graph whose vertices are the points of the Poisson process, and edges exist between two points if and only if their distance is less than a fixed given threshold. We compute explicitly the distribution of the number of connected components of this graph. The proof relies on inverting some Laplace transforms.