Department of Cartography, Faculty of Science and Technology, São Paulo State University (UNESP), Rua Roberto Simonsen 305, 19060-900 Presidente Prudente, SP, Brazil
Copyright © 2009 Paulo de Oliveira Camargo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
One of the largest sources of error in positioning and navigation with GNSS is the ionosphere, and the associated error is directly proportional to the TEC and inversely proportional to the square of the signal frequency that propagates through the ionosphere. The equatorial region, especially in Brazil, is where the highest spatial and temporal value variations of the TEC are seen, and where these various features of the ionosphere, such as the equatorial anomaly and scintillation, can be found. Thus, the development and assessments of ionospheric models are important. In this paper, the quality of the TEC was evaluated, as well as the systematic error in the L1 carrier and the inter-frequency biases of satellites and receivers estimated with the Mod_Ion, observable from GPS and integration with the GLONASS, collected with dual frequency receivers.